High-yield porphyrin production through metabolic engineering and biocatalysis – Nature.com

Hiroto, S., Miyake, Y. & Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 117, 29103043 (2017).

Article CAS PubMed Google Scholar

Barr, H. et al. Eradication of high-grade dysplasia in columnar-lined (Barretts) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 348, 584585 (1996).

Article CAS PubMed Google Scholar

Surdel, M. C. et al. Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc. Natl Acad. Sci. USA 114, E6652E6659 (2017).

Article CAS PubMed PubMed Central Google Scholar

Drury, S. L. et al. Simultaneous exposure to intracellular and extracellular photosensitizers for the treatment of Staphylococcus aureus infections. Antimicrob. Agents Chemother. 65, e0091921 (2021).

Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 39193962 (2014).

Article CAS PubMed PubMed Central Google Scholar

Zhang, J. et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 55, 107904 (2022).

Article CAS PubMed Google Scholar

Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 31783193 (2022).

Article CAS PubMed Google Scholar

Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 37173797 (2017).

Article CAS PubMed Google Scholar

Singh, S. et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 1026110306 (2015).

Article CAS PubMed PubMed Central Google Scholar

Espinas, N. A., Kobayashi, K., Takahashi, S., Mochizuki, N. & Masuda, T. Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 13441354 (2012).

Article CAS PubMed Google Scholar

In, M.-J., Kim, D. C., Chae, H. J. & Oh, N.-S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotechnol. Biochem. 67, 365367 (2003).

Article CAS PubMed Google Scholar

Lichtenthaler, H. K. & Buschmann, C. Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr. Protoc. Food Anal. Chem. 1, F4.2.1F4.2.6 (2001).

Article Google Scholar

Kwon Seok, J., de Boer Arjo, L., Petri, R. & Schmidt-Dannert, C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 48754883 (2003).

Article PubMed PubMed Central Google Scholar

Bali, S. et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl Acad. Sci. USA 108, 1826018265 (2011).

Article CAS PubMed PubMed Central Google Scholar

Dailey Harry, A. et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048-16 (2017).

PubMed PubMed Central Google Scholar

Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl Acad. Sci. USA 112, 22102215 (2015).

Article CAS PubMed PubMed Central Google Scholar

Fang, H. et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9, 4917 (2018).

Article PubMed PubMed Central Google Scholar

Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).

Article PubMed PubMed Central Google Scholar

Nielsen, M. T. et al. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274282 (2015).

Article CAS PubMed Google Scholar

Zhang, J. et al. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. Biotechnol. Biofuels Bioprod. 16, 33 (2023).

Article PubMed PubMed Central Google Scholar

Dai, J. et al. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol. 19, 173 (2019).

Article PubMed PubMed Central Google Scholar

Ouchane, S., Picaud, M., Therizols, P., Reiss-Husson, F. & Astier, C. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J. Biol. Chem. 282, 76907699 (2007).

Article CAS PubMed Google Scholar

Toriya, M. et al. Zincphyrin, a novel coproporphyrin III with zinc from Streptomyces sp. J. Antibiot. (Tokyo) 46, 196200 (1993).

Article CAS PubMed Google Scholar

Nguyen, H. T. et al. Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl. Microbiol. Biotechnol. 104, 713724 (2020).

Article CAS PubMed Google Scholar

Cleary, J. L., Kolachina, S., Wolfe, B. E. & Sanchez, L. M. Coproporphyrin III produced by the bacterium Glutamicibacter arilaitensis binds zinc and is upregulated by fungi in cheese rinds. mSystems. 3, e00036-18 (2018).

Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720728 (2018).

Article CAS Google Scholar

Ko, Y. J. et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66, 217228 (2021).

Article CAS PubMed Google Scholar

Ishchuk, O. P. et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 119, e2108245119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Choi, K. R., Yu, H. E. & Lee, S. Y. Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 33193325 (2022).

Article CAS PubMed Google Scholar

Nelson, N. Metal ion transporters and homeostasis. EMBO J. 18, 43614371 (1999).

Article CAS PubMed PubMed Central Google Scholar

Frunzke, J., Gtgens, C., Brocker, M. & Bott, M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193, 12121221 (2011).

Article CAS PubMed PubMed Central Google Scholar

Koripella, R. K. et al. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J. Biol. Chem. 287, 3025730267 (2012).

Article CAS PubMed PubMed Central Google Scholar

Kojima, I., Maruhashi, K., Sato, H. & Fujiwara, Y. A highly active producer of coproporphyrin III and uroporphyrin III. J. Ferment. Bioeng. 76, 527529 (1993).

Article CAS Google Scholar

Zhang, L. et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4, 212219 (2019).

Article PubMed PubMed Central Google Scholar

Shi, T. et al. Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth. Syst. Biotechnol. 6, 335342 (2021).

Article CAS PubMed PubMed Central Google Scholar

Lee, S. Q. E., Tan, T. S., Kawamukai, M. & Chen, E. S. Cellular factories for coenzyme Q10 production. Microb. Cell. Fact. 16, 39 (2017).

Article PubMed PubMed Central Google Scholar

Lu, W. et al. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab. Eng. 29, 208216 (2015).

Article CAS PubMed Google Scholar

Wang, Z.-J. et al. Oxygen uptake rate controlling strategy balanced with oxygen supply for improving coenzyme Q10 production by Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 25, 459469 (2020).

Article CAS Google Scholar

Klaus, O. et al. Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 77, 102764 (2022).

Article CAS PubMed Google Scholar

Qiang, S. et al. Elevated -carotene synthesis by the engineered rhodobacter sphaeroides with enhanced CrtY expression. J. Agric. Food Chem. 67, 95609568 (2019).

Article CAS PubMed Google Scholar

Orsi, E. et al. Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. Biotechnol. Biofuels 13, 123 (2020).

Article CAS PubMed PubMed Central Google Scholar

Hu, J., Yang, H., Wang, X., Cao, W. & Guo, L. Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides.Int. J. Hydrog. Energy 45, 94519458 (2020).

Article CAS Google Scholar

Li, S. et al. Photoautotrophic hydrogen production of Rhodobacter sphaeroides in a microbial electrosynthesis cell. Bioresour. Technol. 320, 124333 (2021).

Article CAS PubMed Google Scholar

Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 118, 531541 (2021).

Article CAS PubMed Google Scholar

Oh, J.-I. & Kaplan, S. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 11161123 (2001).

Article CAS PubMed Google Scholar

Imam, S., Noguera, D. R. & Donohue, T. J. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet. 10, e1004837 (2014).

Article PubMed PubMed Central Google Scholar

Kang, Z. et al. Recent advances in microbial production of -aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30, 15331542 (2012).

Article CAS PubMed Google Scholar

Nishikawa, S. et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87, 798804 (1999).

Article CAS PubMed Google Scholar

Urakami, T. & Yoshida, T. Production of ubiquinone and bacteriochlorophyll a by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Ferment. Bioeng. 76, 191194 (1993).

Article CAS Google Scholar

Zeilstra-Ryalls, J. H. & Kaplan, S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J. Bacteriol. 177, 64226431 (1995).

Article CAS PubMed PubMed Central Google Scholar

Wei, W. et al. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol. Microbiol. 104, 278293 (2017).

Article CAS PubMed Google Scholar

Read the original:

High-yield porphyrin production through metabolic engineering and biocatalysis - Nature.com

Related Posts

Comments are closed.