Dynamical flexible inference of nonlinear latent factors and structures in neural population activity – Nature.com

Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 5156 (2012).

Article CAS PubMed PubMed Central Google Scholar

Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423426 (2014).

Article CAS PubMed PubMed Central Google Scholar

Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications to brainmachine interfaces. Nat. Commun. 6, 7759 (2015).

Article CAS PubMed Google Scholar

Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

Article PubMed PubMed Central Google Scholar

Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805815 (2018).

Article CAS PubMed PubMed Central Google Scholar

Remington, E. D., Narain, D., Hosseini, E. A., Correspondence, J. & Jazayeri, M. Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics. Neuron 98, 10051019 (2018).

Article CAS PubMed PubMed Central Google Scholar

Chaudhuri, R., Gerek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 15121520 (2019).

Article CAS PubMed Google Scholar

Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

Article CAS Google Scholar

Stavisky, S. D. et al. Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. eLife 8, e46015 (2019).

Article PubMed PubMed Central Google Scholar

Susilaradeya, D. et al. Extrinsic and intrinsic dynamics in movement intermittency. eLife 8, e40145 (2019).

Article PubMed PubMed Central Google Scholar

Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation. Neuron https://doi.org/10.1016/j.neuron.2020.05.020 (2020).

Article PubMed PubMed Central Google Scholar

Abbaspourazad, H., Choudhury, M., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat. Commun. 12, 607 (2021).

Article CAS PubMed PubMed Central Google Scholar

Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140149 (2021).

Article CAS PubMed Google Scholar

Hurwitz, C. et al. Targeted neural dynamical modeling. Adv. Neural Inf. Process. Syst. 34, 2937929392 (2021).

Bondanelli, G., Deneux, T., Bathellier, B. & Ostojic, S. Network dynamics underlying OFF responses in the auditory cortex. eLife 10, e53151 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature https://doi.org/10.1038/s41586-021-04268-7 (2022)

Shanechi, M. M. Brainmachine interfaces from motor to mood. Nat. Neurosci. 22, 15541564 (2019).

Article CAS PubMed Google Scholar

Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249275 (2020).

Article CAS PubMed PubMed Central Google Scholar

Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113120 (2021).

Article CAS PubMed PubMed Central Google Scholar

Churchland, M. M. & Shenoy, K. V. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 42354257 (2007).

Article PubMed Google Scholar

Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 15001509 (2014).

Article CAS PubMed PubMed Central Google Scholar

Yang, Y. et al. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat. Biomed. Eng. 5, 324345 (2021).

Article PubMed Google Scholar

Pandarinath, C. et al. Latent factors and dynamics in motor cortex and their application to brainmachine interfaces. J. Neurosci. 38, 93909401 (2018).

Article CAS PubMed PubMed Central Google Scholar

Berger, M., Agha, N. S. & Gail, A. Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. eLife 9, e51322 (2020).

Article CAS PubMed PubMed Central Google Scholar

Dastin-van Rijn, E. M., Provenza, N. R., Harrison, M. T. & Borton, D. A. How do packet losses affect measures of averaged neural signals. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 941944 (2021).

PubMed Google Scholar

Dastin-van Rijn, E. M. et al. PELP: accounting for missing data in neural time series by periodic estimation of lost packets. Front. Hum. Neurosci. 16, 934063 (2022).

Article PubMed PubMed Central Google Scholar

Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinsons disease. Nat. Biotechnol. 39, 10781085 (2021).

Article CAS PubMed PubMed Central Google Scholar

Mazzenga, F., Cassioli, D., Loreti, P. & Vatalaro, F. Evaluation of packet loss probability in Bluetooth networks. In Proc. IEEE International Conference on Communications 313317 (IEEE, 2002).

Sellers, K. K. et al. Analysis-rcs-data: open-source toolbox for the ingestion, time-alignment, and visualization of sense and stimulation data from the medtronic summit RC+S system. Front. Hum. Neurosci. 15, 714256 (2021).

Article PubMed PubMed Central Google Scholar

Simeral, J. D. et al. Home use of a percutaneous wireless intracortical braincomputer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68, 23132325 (2021).

Article PubMed PubMed Central Google Scholar

Tsimbalo, E. et al. Mitigating packet loss in connectionless Bluetooth Low Energy. In IEEE 2nd World Forum on Internet of Things (WF-IoT) 291296 (IEEE, 2015).

Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361375 (2022).

Article CAS PubMed PubMed Central Google Scholar

Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106139 (2015).

Article CAS PubMed PubMed Central Google Scholar

Peixoto, D. et al. Decoding and perturbing decision states in real time. Nature 591, 604609 (2021).

Article CAS PubMed Google Scholar

Bazaka, K. & Jacob, M. V. Implantable devices: issues and challenges. Electronics 2, 134 (2013).

Article Google Scholar

Even-Chen, N. et al. Power-saving design opportunities for wireless intracortical braincomputer interfaces. Nat. Biomed. Eng. 4, 984996 (2020).

Article PubMed PubMed Central Google Scholar

Homer, M. L., Nurmikko, A. V., Donoghue, J. P. & Hochberg, L. R. Sensors and decoding for intracortical brain computer interfaces. Annu. Rev. Biomed. Eng. 15, 383405 (2013).

Article CAS PubMed PubMed Central Google Scholar

Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767837 (2017).

Article PubMed Google Scholar

Schwarz, D. A. et al. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670676 (2014).

Article CAS PubMed PubMed Central Google Scholar

Stanslaski, S. et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 12, 12301245 (2018).

Article PubMed PubMed Central Google Scholar

Topalovic, U. et al. Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron 108, 322334.e9 (2020).

Article CAS PubMed PubMed Central Google Scholar

Yin, M. et al. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron 84, 11701182 (2014).

Article CAS PubMed Google Scholar

Sani, O. G. et al. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954 (2018).

Article CAS PubMed Google Scholar

Buesing, L., Macke, J. H. & Sahani, M. Spectral learning of linear dynamics from generalised-linear observations with application to neural population data. Adv. Neural Inf. Process. Syst. 25, 16821690 (2012).

Macke, J. H. et al. Empirical models of spiking in neuronal populations. Adv. Neural Inf. Process. Syst. 24, 19 (2011).

Google Scholar

Aghagolzadeh, M. & Truccolo, W. Inference and decoding of motor cortex low-dimensional dynamics via latent state-space models. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 272282 (2016).

Article PubMed Google Scholar

Smith, A. C. & Brown, E. N. Estimating a statespace model from point process observations. Neural Comput. 15, 965991 (2003).

Article PubMed Google Scholar

strm, K. J. Introduction to Stochastic Control Theory (Courier Corporation, 2012).

Ye, J. & Pandarinath, C. Representation learning for neural population activity with neural data transformers. Neurons Behav. Data Anal. Theory 5, 118 (2021).

Google Scholar

Gao, Y., Archer, E. W., Paninski, L. & Cunningham, J. P. Linear dynamical neural population models through nonlinear embeddings. Adv. Neural Inf. Process. Syst. 29, 163171 (2016).

She, Q. & Wu, A. Neural dynamics discovery via Gaussian process recurrent neural networks. In Proc. 35th Uncertainty in Artificial Intelligence Conference (eds Adams, R. P. & Gogate, V.) 454464 (PMLR, 2020).

Kim, T. D., Luo, T. Z., Pillow, J. W. & Brody, C. Inferring latent dynamics underlying neural population activity via neural differential equations. In Proc. 38th International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 55515561 (PMLR, 2021).

Zhu, F. et al. Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time. Adv. Neural Inf. Process. Syst. 34, 23312345 (2021).

Lipton, Z. C., Kale, D. & Wetzel, R. Directly modeling missing data in sequences with RNNs: improved classification of clinical time series. In Proc. 1st Machine Learning for Healthcare Conference (eds Doshi-Velez, F. et al) 253270 (PMLR, 2016).

Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8, 6085 (2018).

Article PubMed PubMed Central Google Scholar

Ghazi, M. M. et al. Robust training of recurrent neural networks to handle missing data for disease progression modeling. Preprint at https://arxiv.org/abs/1808.05500 (2018).

Read the original:

Dynamical flexible inference of nonlinear latent factors and structures in neural population activity - Nature.com

Related Posts

Comments are closed.