The demand for Deep Learning has grown over the years and its applications are being used in every business sector. Companies are now on the lookout for skilled professionals who can use deep learning and machine learning techniques to build models that can mimic human behavior. As per indeed, the average salary for a deep learning engineer in the United States is $133,580 per annum. In this tutorial, you will learn the top 45 Deep Learning interview questions that are frequently asked.
Check out some of the frequently asked deep learning interview questions below:
If you are going for a deep learning interview, you definitely know what exactly deep learning is. However, with this question the interviewee expects you to give an in-detail answer, with an example.Deep Learning involves taking large volumes of structured or unstructured data and using complex algorithms to train neural networks. It performs complex operations to extract hidden patterns and features (for instance, distinguishing the image of a cat from that of a dog).
Neural Networks replicate the way humans learn, inspired by how the neurons in our brains fire, only much simpler.
The most common Neural Networks consist of three network layers:
Each sheet contains neurons called nodes, performing various operations. Neural Networks are used in deep learning algorithms like CNN, RNN, GAN, etc.
As in Neural Networks, MLPs have an input layer, a hidden layer, and an output layer. It has the samestructure as a single layer perceptron with one or more hidden layers. A single layer perceptron can classify only linear separable classes with binary output (0,1), but MLP can classify nonlinear classes.
Except for the input layer, each node in the other layers uses a nonlinear activation function. This means the input layers, the data coming in, and the activation function is based upon all nodes and weights being added together, producing the output. MLP uses a supervised learning method called backpropagation. In backpropagation, the neural network calculates the error with the help of cost function. It propagates this error backward from where it came (adjusts the weights to train the model more accurately).
The process of standardizing and reforming data is called Data Normalization. Its a pre-processing step to eliminate data redundancy. Often, data comes in, and you get the same information in different formats. In these cases, you should rescale values to fit into a particular range, achieving better convergence.
One of the most basic Deep Learning models is a Boltzmann Machine, resembling a simplified version of the Multi-Layer Perceptron. This model features a visible input layer and a hidden layer -- just a two-layer neural net that makes stochastic decisions as to whether a neuron should be on or off. Nodes are connected across layers, but no two nodes of the same layer are connected.
At the most basic level, an activation function decides whether a neuron should be fired or not. It accepts the weighted sum of the inputs and bias as input to any activation function. Step function, Sigmoid, ReLU, Tanh, and Softmax are examples of activation functions.
Also referred to as loss or error, cost function is a measure to evaluate how good your models performance is. Its used to compute the error of the output layer during backpropagation. We push that error backward through the neural network and use that during the different training functions.
Gradient Descent is an optimal algorithm to minimize the cost function or to minimize an error. The aim is to find the local-global minima of a function. This determines the direction the model should take to reduce the error.
This is one of the most frequently asked deep learning interview questions. Backpropagation is a technique to improve the performance of the network. It backpropagates the error and updates the weights to reduce the error.
In this deep learning interview question, the interviewee expects you to give a detailed answer.
A Feedforward Neural Network signals travel in one direction from input to output. There are no feedback loops; the network considers only the current input. It cannot memorize previous inputs (e.g., CNN).
A Recurrent Neural Networks signals travel in both directions, creating a looped network. It considers the current input with the previously received inputs for generating the output of a layer and can memorize past data due to its internal memory.
The RNN can be used for sentiment analysis, text mining, and image captioning. Recurrent Neural Networks can also address time series problems such as predicting the prices of stocks in a month or quarter.
Softmax is an activation function that generates the output between zero and one. It divides each output, such that the total sum of the outputs is equal to one. Softmax is often used for output layers.
ReLU (or Rectified Linear Unit) is the most widely used activation function. It gives an output of X if X is positive and zeros otherwise. ReLU is often used for hidden layers.
This is another frequently asked deep learning interview question. With neural networks, youre usually working with hyperparameters once the data is formatted correctly. A hyperparameter is a parameter whose value is set before the learning process begins. It determines how a network is trained and the structure of the network (such as the number of hidden units, the learning rate, epochs, etc.).
When your learning rate is too low, training of the model will progress very slowly as we are making minimal updates to the weights. It will take many updates before reaching the minimum point.
If the learning rate is set too high, this causes undesirable divergent behavior to the loss function due to drastic updates in weights. It may fail to converge (model can give a good output) or even diverge (data is too chaotic for the network to train).
Dropout is a technique of dropping out hidden and visible units of a network randomly to prevent overfitting of data (typically dropping 20 percent of the nodes). It doubles the number of iterations needed to converge the network.
Batch normalization is the technique to improve the performance and stability of neural networks by normalizing the inputs in every layer so that they have mean output activation of zero and standard deviation of one.
The next step on this top Deep Learning interview questions and answers blog will be to discuss intermediate questions.
Batch Gradient Descent
Stochastic Gradient Descent
The batch gradient computes the gradient using the entire dataset.
It takes time to converge because the volume of data is huge, and weights update slowly.
The stochastic gradient computes the gradient using a single sample.
It converges much faster than the batch gradient because it updates weight more frequently.
Overfitting occurs when the model learns the details and noise in the training data to the degree that it adversely impacts the execution of the model on new information. It is more likely to occur with nonlinear models that have more flexibility when learning a target function. An example would be if a model is looking at cars and trucks, but only recognizes trucks that have a specific box shape. It might not be able to notice a flatbed truck because there's only a particular kind of truck it saw in training. The model performs well on training data, but not in the real world.
Underfitting alludes to a model that is neither well-trained on data nor can generalize to new information. This usually happens when there is less and incorrect data to train a model. Underfitting has both poor performance and accuracy.
To combat overfitting and underfitting, you can resample the data to estimate the model accuracy (k-fold cross-validation) and by having a validation dataset to evaluate the model.
There are two methods here: we can either initialize the weights to zero or assign them randomly.
Initializing all weights to 0: This makes your model similar to a linear model. All the neurons and every layer perform the same operation, giving the same output and making the deep net useless.
Initializing all weights randomly: Here, the weights are assigned randomly by initializing them very close to 0. It gives better accuracy to the model since every neuron performs different computations. This is the most commonly used method.
There are four layers in CNN:
Pooling is used to reduce the spatial dimensions of a CNN. It performs down-sampling operations to reduce the dimensionality and creates a pooled feature map by sliding a filter matrix over the input matrix.
Long-Short-Term Memory (LSTM) is a special kind of recurrent neural network capable of learning long-term dependencies, remembering information for long periods as its default behavior. There are three steps in an LSTM network:
While training an RNN, your slope can become either too small or too large; this makes the training difficult. When the slope is too small, the problem is known as a Vanishing Gradient. When the slope tends to grow exponentially instead of decaying, its referred to as an Exploding Gradient. Gradient problems lead to long training times, poor performance, and low accuracy.
Tensorflow provides both C++ and Python APIs, making it easier to work on and has a faster compilation time compared to other Deep Learning libraries like Keras and Torch. Tensorflow supports both CPU and GPU computing devices.
This is another most frequently asked deep learning interview question. A tensor is a mathematical object represented as arrays of higher dimensions. These arrays of data with different dimensions and ranks fed as input to the neural network are called Tensors.
Constants - Constants are parameters whose value does not change. To define a constant we use tf.constant() command. For example:
a = tf.constant(2.0,tf.float32)
b = tf.constant(3.0)
Print(a, b)
Variables - Variables allow us to add new trainable parameters to graph. To define a variable, we use the tf.Variable() command and initialize them before running the graph in a session. An example:
W = tf.Variable([.3].dtype=tf.float32)
b = tf.Variable([-.3].dtype=tf.float32)
Placeholders - these allow us to feed data to a tensorflow model from outside a model. It permits a value to be assigned later. To define a placeholder, we use the tf.placeholder() command. An example:
a = tf.placeholder (tf.float32)
b = a*2
with tf.Session() as sess:
result = sess.run(b,feed_dict={a:3.0})
print result
Sessions - a session is run to evaluate the nodes. This is called the Tensorflow runtime. For example:
a = tf.constant(2.0)
b = tf.constant(4.0)
c = a+b
# Launch Session
Sess = tf.Session()
# Evaluate the tensor c
print(sess.run(c))
Everything in a tensorflow is based on creating a computational graph. It has a network of nodes where each node operates, Nodes represent mathematical operations, and edges represent tensors. Since data flows in the form of a graph, it is also called a DataFlow Graph.
Suppose there is a wine shop purchasing wine from dealers, which they resell later. But some dealers sell fake wine. In this case, the shop owner should be able to distinguish between fake and authentic wine.
The forger will try different techniques to sell fake wine and make sure specific techniques go past the shop owners check. The shop owner would probably get some feedback from wine experts that some of the wine is not original. The owner would have to improve how he determines whether a wine is fake or authentic.
The forgers goal is to create wines that are indistinguishable from the authentic ones while the shop owner intends to tell if the wine is real or not accurately.
Let us understand this example with the help of an image shown above.
There is a noise vector coming into the forger who is generating fake wine.
Here the forger acts as a Generator.
The shop owner acts as a Discriminator.
The Discriminator gets two inputs; one is the fake wine, while the other is the real authentic wine. The shop owner has to figure out whether it is real or fake.
So, there are two primary components of Generative Adversarial Network (GAN) named:
The generator is a CNN that keeps keys producing images and is closer in appearance to the real images while the discriminator tries to determine the difference between real and fake images The ultimate aim is to make the discriminator learn to identify real and fake images.
This Neural Network has three layers in which the input neurons are equal to the output neurons. The network's target outside is the same as the input. It uses dimensionality reduction to restructure the input. It works by compressing the image input to a latent space representation then reconstructing the output from this representation.
Bagging and Boosting are ensemble techniques to train multiple models using the same learning algorithm and then taking a call.
With Bagging, we take a dataset and split it into training data and test data. Then we randomly select data to place into the bags and train the model separately.
With Boosting, the emphasis is on selecting data points which give wrong output to improve the accuracy.
Read more here:
Top Deep Learning Interview Questions and Answers for 2024 - Simplilearn
- Working at DeepMind | Glassdoor [Last Updated On: September 8th, 2019] [Originally Added On: September 8th, 2019]
- DeepMind Q&A Dataset - New York University [Last Updated On: October 6th, 2019] [Originally Added On: October 6th, 2019]
- Google absorbs DeepMind healthcare unit 10 months after ... [Last Updated On: October 7th, 2019] [Originally Added On: October 7th, 2019]
- deep mind Mathematics, Machine Learning & Computer Science [Last Updated On: November 1st, 2019] [Originally Added On: November 1st, 2019]
- Health strategies of Google, Amazon, Apple, and Microsoft - Business Insider [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- To Understand The Future of AI, Study Its Past - Forbes [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Tremor patients can be relieved of the shakes for THREE YEARS after having ultrasound waves - Herald Publicist [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- The San Francisco Gay Mens Chorus Toured the Deep South - SF Weekly [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- The Universe Speaks in Numbers: The deep relationship between math and physics - The Huntington News [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- MINI John Cooper Works GP is a two-seater hot hatch that shouts its 306 HP - SlashGear [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- How To Face An Anxiety Provoking Situation Like A Champion - Forbes [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- The Most Iconic Tech Innovations of the 2010s - PCMag [Last Updated On: November 24th, 2019] [Originally Added On: November 24th, 2019]
- Why tech companies need to hire philosophers - Quartz [Last Updated On: November 24th, 2019] [Originally Added On: November 24th, 2019]
- Living on Purpose: Being thankful is a state of mind - Chattanooga Times Free Press [Last Updated On: November 24th, 2019] [Originally Added On: November 24th, 2019]
- EDITORIAL: West explosion victims out of sight and clearly out of mind - Waco Tribune-Herald [Last Updated On: November 24th, 2019] [Originally Added On: November 24th, 2019]
- Do you need to sit still to be mindful? - The Sydney Morning Herald [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Listen To Two Neck Deep B-Sides, Beautiful Madness And Worth It - Kerrang! [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Worlds Last Male Northern White Rhino Brought Back To Life Using AI - International Business Times [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Eat, drink, and be merryonly if you keep in mind these food safety tips - Williamsburg Yorktown Daily [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The alarming trip that changed Jeremy Clarksons mind on climate change - The Week UK [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Actionable Insights on Artificial Intelligence in Law Market with Future Growth Prospects by 2026 | AIBrain, Amazon, Anki, CloudMinds, Deepmind,... [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Searching for the Ghost Orchids of the Everglades - Discover Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Parkinsons tremors could be treated with SOUNDWAVES, claim scientists - Herald Publicist [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Golden State Warriors still have prolonged success in mind - Blue Man Hoop [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- 3 Gratitude Habits You Can Adopt Over The Thanksgiving Holiday For Deeper Connection And Joy - Forbes [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The minds that built AI and the writer who adored them. - Mash Viral [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Parkinson's Patients are Mysteriously Losing the Ability to Swim After Treatment - Discover Magazine [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Hannah Fry, the woman making maths cool | Times2 - The Times [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Meditate with Urmila: Find balance of body, mind and breath - Gulf News [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- We have some important food safety tips to keep in mind while cooking this Thanksgiving - WQOW TV News 18 [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Being thankful is a state of mind | Opinion - Athens Daily Review [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- Can Synthetic Biology Inspire The Next Wave of AI? - SynBioBeta [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- LIVING ON PURPOSE: Being thankful is a state of mind - Times Tribune of Corbin [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- AI Hardware Summit Europe launches in Munich, Germany on 10-11 March 2020, the ecosystem event for AI hardware acceleration in Europe - Yahoo Finance [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Of course Facebook and Google want to solve social problems. Theyre hungry for our data - The Guardian [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Larry, Sergey, and the Mixed Legacy of Google-Turned-Alphabet - WIRED [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- AI Index 2019 assesses global AI research, investment, and impact - VentureBeat [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- For the Holidays, the Gift of Self-Care - The New York Times [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Stopping a Mars mission from messing with the mind - Axios [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Feldman: Impeachment articles are 'high crimes' Founders had in mind | TheHill - The Hill [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Opinion | Frankenstein monsters will not be taking our jobs anytime soon - Livemint [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- DeepMind co-founder moves to Google as the AI lab positions itself for the future - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google Isn't Looking To Revolutionize Health Care, It Just Wants To Improve On The Status Quo - Newsweek [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Artificial Intelligence Job Demand Could Live Up to Hype - Dice Insights [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- What Are Normalising Flows And Why Should We Care - Analytics India Magazine [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Terence Crawford has next foe in mind after impressive knockout win - New York Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- DeepMind proposes novel way to train safe reinforcement learning AI - VentureBeat [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Winning the War Against Thinking - So you've emptied your brain. Now what? - Chabad.org [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- 'Echo Chamber' as Author of the 'Hive Mind' - Ricochet.com [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- Lindsey Graham: 'I Have Made Up My Mind' to Exonerate Trump and 'Don't Need Any Witnesses' WATCH - Towleroad [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- Blockchain in Healthcare Market to 2027 By Top Leading Players: iSolve LLC, Healthcoin, Deepmind Health, IBM Corporation, Microsoft Corporation,... [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- In sight but out of mind - The Hindu [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- The Case for Limitlessness Has Its Limits: Review of Limitless Mind by Joe Boaler - Education Next - EducationNext [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- The Top 10 Diners In Deep East Texas, According To Yelp - ksfa860.com [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- 3 breathing exercises to reduce stress, anxiety and a racing mind - Irish Examiner [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- DeepMind exec Andrew Eland leaves to launch startup - Sifted [Last Updated On: December 16th, 2019] [Originally Added On: December 16th, 2019]
- The Top 10 Diners In Deep East Texas, According To Yelp - kicks105.com [Last Updated On: December 17th, 2019] [Originally Added On: December 17th, 2019]
- Mind the Performance Gap New Future Purchasing Category Management Report Out Now - Spend Matters [Last Updated On: December 17th, 2019] [Originally Added On: December 17th, 2019]
- Madison singles and deep cuts that stood out in 2019 - tonemadison.com [Last Updated On: December 19th, 2019] [Originally Added On: December 19th, 2019]
- Hilde Lee: Latkes bring an ancient miracle to mind on first night of Hanukkah - The Daily Progress [Last Updated On: December 19th, 2019] [Originally Added On: December 19th, 2019]
- Political Cornflakes: Trump responds to impeachment with complaints about the 'deep state' and toilet flushing - Salt Lake Tribune [Last Updated On: December 19th, 2019] [Originally Added On: December 19th, 2019]
- Google CEO Sundar Pichai Is the Most Expensive Tech CEO to Keep Around - Observer [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Christmas Lectures presenter Dr Hannah Fry on pigeons, AI and the awesome power of maths - inews [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- The ultimate guitar tuning guide: expand your mind with these advanced tuning techniques - Guitar World [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Inside The Political Mind Of Jerry Brown - Radio Ink [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Elon Musk Fact-Checked His Own Wikipedia Page and Requested Edits Including the Fact He Does 'Zero Investing' - Entrepreneur [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- The 9 Best Blobs of 2019 - Livescience.com [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- AI from Google is helping identify animals deep in the rainforest - Euronews [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Re: Your Account Is Overdrawn - Thrive Global [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Review: In the Vale is full of characters who linger long in the mind - Nation.Cymru [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- 10 Gifts That Cater to Your Loved One's Basic Senses - Wide Open Country [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- The Most Mind-Boggling Scientific Discoveries Of 2019 Include The First Image Of A Black Hole, A Giant Squid Sighting, And An Exoplanet With Water... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- DeepMind's new AI can spot breast cancer just as well as your doctor - Wired.co.uk [Last Updated On: January 1st, 2020] [Originally Added On: January 1st, 2020]
- Why the algorithms assisting medics is good for health services (Includes interview) - Digital Journal [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- 2020: The Rise of AI in the Enterprise - IT World Canada [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- An instant 2nd opinion: Google's DeepMind AI bests doctors at breast cancer screening - FierceBiotech [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Google's DeepMind AI outperforms doctors in identifying breast cancer from X-ray images - Business Insider UK [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- New AI toolkit from the World Economic Forum is promising because it's free - The National [Last Updated On: January 20th, 2020] [Originally Added On: January 20th, 2020]
- AKA Wants to Help People Break Bad Habits and Create New Positive Ones - Hospitality Net [Last Updated On: January 20th, 2020] [Originally Added On: January 20th, 2020]