We are excited to bring Transform 2022 back in-person July 19 and virtually July 20 - 28. Join AI and data leaders for insightful talks and exciting networking opportunities. Register today!
Advice & FAQs from Founders Factory data scientist Ali Kokaz.
Search data science online, and you will find an unending trove of technical tutorials and articles, ranging from how to ingest spreadsheet data, to building a multilayer perceptron for image recognition. However, data science is much more than simply building a complex algorithm: its also about empowering your business by creating a culture of data-driven decision-making.
Indeed, as Hal Varian, Googles chief economist, said back in 2009: The ability to take data to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it thats going to be a hugely important skill in the next decades.
Today, speak to any business leader and nearly all will say that data science is a critical focus for their organization. Yet the reality is theyre struggling recent research shows many firms are unfit for data, for a myriad of reasons including organizational capability, lack of talent, poor quality data and collection processes, to name a few.
So what does it take to build a truly effective data science function?
From understanding what it means to be a data-driven organization, to conducting successful data science projects, Ive compiled the guide below using 16 FAQs I often face when helping businesses work through their data challenges.
As Tim Berners-Lee, inventor of the World Wide Web once said: Data is a precious thing and will last longer than the systems themselves.
In a nutshell, data science is the process and ability to turn raw data into information and insights to inform your business decisions. Without it, you are making decisions blind, or based on opinions and assumptions, rather than facts.
Data science can also be used to help identify opportunities, meaning you can find extra user growth, or revenue streams, by understanding your customers and markets more deeply. You can also use data science to help automate or reduce the overhead of certain processes, like evaluating and processing loan applications for a challenger bank, meaning you can cut costs and set the business up to scale.
This is largely the reason why companies are now pouring money into their data storage, analytics and science capabilities to improve operations and decision-making. It is no surprise that some of the biggest winners of the last decade were essentially data companies, like Google or Facebook, as well as less specialized examples like ASOS, who heavily optimize their shopping experience through data. Essentially, those that fail to invest in this area will quickly be left behind.
Without data youre just another person with an opinion, were the wise words of famous statistician W. Edwards Deming, which gets to the crux of what data-driven organizations are.
A data-driven organization is one that uses data to drive business decisions and processes, meaning they are informed when making choices, and decide things in a factual manner, rather than simply based on opinions and anecdotes.
For example, at my previous workplace a leading data management consultancy business decisions that needed to be made had to be backed up with data evidence, with projects prioritized based on data around how much impact they will have. That type of informed decision-making was pivotal, meaning we were so much more well-informed before undertaking work.
Creating a data-driven organization requires two foundations:
A major factor underlying these foundations is consistent vocabulary, terminology and semantics across the organization, and stressed importance on why good data is vital for this to work this is so that employees collect and store data properly rather than seeing it as another chore on their to-do list.
This is pivotal to the success of a data department within any organization. There are a few steps I take within my department to ensure this happens:
A fundamental part of building an effective DS team is to set out how youre going to measure success. This is where critical business KPIs come into play! Its always important to make sure you measure the success of the data team directly in relation to business goals. For example, this could be the number of customers gained through data science projects or time saved through automation.
You could also measure the interaction of the business with the data outputs as a measure of success. For instance, how many people are using the dashboards and reports the team has built? What decisions are being made off the back of them?
Typically, part of the project-definition process is defining success criteria. When these are hit, a project can be seen as achieving its targets; hence using these as KPIs can also be helpful.
In many aspects, this statement makes a lot of sense. However, a good data science project to me is one that produces the biggest impact on the business, in the shortest amount of time, and continues to drive business impact moving forward.
Working with various businesses, Im always most concerned with the impact a project has, rather than the accuracy, quality or performance of the model in a project.
Id also like to caveat that with the fact that fastest is not always best. Taking slightly longer with a project to future-proof or productionize more efficiently can pay off more in the longer term.
As companies collect ever more data about their customers and their product usage behaviors, a rising challenge facing many businesses is how to analyze this data to derive useful insights.
Before undertaking any project, I always start with the questions below to inform planning and objectives:
I cannot overstate the importance of this! When I work with startups, one of my first tasks is aligning on terminology, but it should be established for any team for the following reasons:
A well-defined workflow for data science applications is a great way to ensure that various teams in the organization remain in sync, which helps to avoid potential delays, financial loss, and especially projects going sideways without conclusive success or failure.
There are several suggested workflows currently in circulation, with many building on existing frameworks in other data fields, such as data mining. While theres no one-size-fits-all solution to all data science projects, often components depend on the company and team objectives. In my experience, there are certain steps that should be ubiquitous in all data science teams, accompanied by common approaches. These include:
Data science and related fields of AI and machine learning are challenging assumptions upon which societies are built. The more data a business collects, the more powerful the organization is relative to the individuals.As a result, this presents a number of ethical challenges to be aware of when building data products, which include:
For further reading, its worth checking out Googles numerous blogs on fairness.
This really depends on the use case, but the majority of the time, no. Data for insights is only useful in sensible aggregation, and not on a personal level. Usually, a middle ground is reached where some PII is collected that has been agreed is useful (such as address) but not all.
First and foremost, you should securely store the sensitive data separately and limit access to this through correct permissioning and requesting. The remaining informative data can be open, with identifying data being anonymized (using a random user_id, for example). You could also impose transparency of what the data is being used for, ensuring data is only used for the reasons stated by stakeholders or the business.
Other things you can do include policies to limit accessibility, by setting minimum granularity on dashboards, for example. You can revisit these policies regularly as the business grows.
Scaling a data science team effectively is more than just hiring great people. In my experience, there are multiple areas and things you need to consider and maybe alter, including:
When thinking about building a team, its vitally important to think about the overall skillset of the team, rather than simply what each team member brings individually. There are multiple methods and approaches you can use to define what the team needs to look like, but thats a whole other guide! But what common skills/traits do I look for within any team member?
Some others to consider also include:
When working, especially in a smaller business, you will spend a large amount of time with that person, its important to try and understand whether that individual will fit in with the rest of the team, but also if they will enjoy working there. I usually do this in the form of two chats one at the start of the recruiting process and one at the end.
The reason for splitting into two is I want to see how the candidate behaves around new people, and then how they perform in front of someone they are now more comfortable with. Does their attitude change? Now they are more comfortable at the end of the process, its a chance to see if they are naturally more introverted/extroverted. Does their professionalism change?
My questions also revolve around previous experience how did they act with previous colleagues? What do they say about previous employers? What did they enjoy? What did they not enjoy?
I also use this as an opportunity to understand more about their aspirations where do they want to be? What do they want to develop? What do they look for in a role?
For culture fit, I try to involve at least one other member from the team to see how they get on. An important point here is you need to find someone right for the team, an introvert in an extroverted team wont work well and vice versa.
Typically, Ill split this into two parts:
Here, Im looking at how they approach a problem, hence a time-limited exercise means they cannot create the most complex solution, so they will have to make decisions on what to simplify. How do they assess these trade-offs? How do they communicate them? Do they identify and communicate caveats? How do they link the problem to the business? Do they try to understand the impact of the outcomes?
If I need to drill further into technical ability, I use this as an opportunity to discuss what they would have done if they had more time. What do they know about a specific topic? How in-depth is their knowledge?
I am assessing this throughout the whole interview process, especially through the take-home task stage. How do they present their work? What medium do they use? Do they cover all aspects of a project or a problem? Can they describe complex concepts clearly? In a non-technical way? Do they listen intently to my questions? Do they take time to think about an answer? Do they try to clarify questions?
I usually also reserve a few questions about how they got on with their teams and previous presentations and how did they build rapport with the business? How much contact did they have? Ask them to talk me through a good presentation they had.
Another aspect to pay close attention to is cues in their emails. How are they worded? Short? Long? Full of grammar/spelling mistakes? How formal?
This is a complex one, and will vary massively from one individual to the next, but managers still have a huge role to play in keeping staff happy. This is especially important in an area like data science, where employee churn is high, and roles are always available for superstar individuals. From my experience, there are a few areas I think about in terms of team retention:
Data science is a fast-moving field, and many data scientists feel left behind at work if not continuously developing and learning. Set aside regular time for the team to discuss and pursue development opportunities, it can be as simple as setting some time aside every Friday for members to pursue something extracurricular.
One critical thing I have experienced is that a lot of teams have training budgets to allow for courses but do not set aside time for the team members to train in those learned skills. Allow your team time to hone these skills, in addition to paying for attending courses.
Also, feedback is a two-way street. Allow your team to be able to give you feedback, too, so they can inform you how best to manage them and get the best out of them. The one point I never change, however, is where I give this feedback, its always in private, and its always constructive.
As data science becomes an increasingly integral part of any business, navigating the evolving complexities of creating a powerful data engine has never been harder. Yet, shining a light on the common challenges faced by many firms shows that good data science requires a laser-sharp focus on fundamental data principles and ethics, and building a data-driven culture. Those businesses willing to invest the time and resources to become a truly data-driven organization will be positioning themselves for success in the years ahead.
Ali Kokaz is a data scientist at Founders Factory.
Welcome to the VentureBeat community!
DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.
If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.
You might even considercontributing an articleof your own!
Read More From DataDecisionMakers
Read the original here:
Creating a powerful data department with data science - VentureBeat
- Global Data Science Platform Market Report 2020 Industry Trends, Share and Size, Complete Data Analysis across the Region and Globe, Opportunities and... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science and Machine-Learning Platforms Market Size, Drivers, Potential Growth Opportunities, Competitive Landscape, Trends And Forecast To 2027 -... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Industrial Access Control Market 2020-28 use of data science in agriculture to maximize yields and efficiency with top key players - TechnoWeekly [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- IPG Unveils New-And-Improved Copy For Data: It's Not Your Father's 'Targeting' 11/11/2020 - MediaPost Communications [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Risks and benefits of an AI revolution in medicine - Harvard Gazette [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- UTSA to break ground on $90 million School of Data Science and National Security Collaboration Center - Construction Review [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Addressing the skills shortage in data science and analytics - IT-Online [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science Platform Market Research Growth by Manufacturers, Regions, Type and Application, Forecast Analysis to 2026 - Eurowire [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- 2020 AI and Data Science in Retail Industry Ongoing Market Situation with Manufacturing Opportunities: Amazon Web Services, Baidu Inc., BloomReach... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Endowed Chair of Data Science job with Baylor University | 299439 - The Chronicle of Higher Education [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data scientists gather 'chaos into something organized' - University of Miami [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- AI Update: Provisions in the National Defense Authorization Act Signal the Importance of AI to American Competitiveness - Lexology [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Healthcare Innovations: Predictions for 2021 Based on the Viewpoints of Analytics Thought Leaders and Industry Experts | Quantzig - Business Wire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Poor data flows hampered governments Covid-19 response, says the Science and Technology Committee - ComputerWeekly.com [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Ilia Dub and Jasper Yip join Oliver Wyman's Asia partnership - Consultancy.asia [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Save 98% off the Complete Excel, VBA, and Data Science Certification Training Bundle - Neowin [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science for Social Good Programme helps Ofsted and World Bank - India Education Diary [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Associate Professor of Fisheries Oceanography named a Cooperative Institute for the North Atlantic Region (CINAR) Fellow - UMass Dartmouth [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Rapid Insight To Host Free Webinar, Building on Data: From Raw Piles to Data Science - PR Web [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- This Is the Best Place to Buy Groceries, New Data Finds | Eat This Not That - Eat This, Not That [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Which Technology Jobs Will Require AI and Machine Learning Skills? - Dice Insights [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Companies hiring data scientists in NYC and how much they pay - Business Insider [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Calling all rock stars: hire the right data scientist talent for your business - IDG Connect [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- How Professors Can Use AI to Improve Their Teaching In Real Time - EdSurge [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- BCG GAMMA, in Collaboration with Scikit-Learn, Launches FACET, Its New Open-Source Library for Human-Explainable Artificial Intelligence - PRNewswire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science Platform Market Insights, Industry Outlook, Growing Trends and Demands 2020 to 2025 The Courier - The Courier [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- UBIX and ORS GROUP announce partnership to democratize advanced analytics and AI for small and midmarket organizations - PR Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Praxis Business School is launching its Post Graduate Program in Data Engineering in association with Knowledge Partners - Genpact and LatentView... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- What's So Trendy about Knowledge Management Solutions Market That Everyone Went Crazy over It? | Bloomfire, CSC (American Productivity & Quality... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Want to work in data? Here are 6 skills you'll need Just now - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Data, AI and babies - BusinessLine [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Here's how much Amazon pays its Boston-based employees - Business Insider [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Datavant and Kythera Increase the Value Of Healthcare Data Through Expanded Data Science Platform Partnership - GlobeNewswire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- O'Reilly Analysis Unveils Python's Growing Demand as Searches for Data Science, Cloud, and ITOps Topics Accelerate - Business Wire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Book Review: Hands-On Exploratory Data Analysis with Python - insideBIGDATA [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The 12 Best R Courses and Online Training to Consider for 2021 - Solutions Review [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Software AG's TrendMiner 2021.R1 Release Puts Data Science in the Hands of Operational Experts - Yahoo Finance [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The chief data scientist: Who they are and what they do - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Berkeley's data science leader dedicated to advancing diversity in computing - UC Berkeley [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Awful Earnings Aside, the Dip in Alteryx Stock Is Worth Buying - InvestorPlace [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Why Artificial Intelligence May Not Offer The Business Value You Think - CMSWire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Getting Prices Right in 2021 - Progressive Grocer [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Labelbox raises $40 million for its data labeling and annotation tools - VentureBeat [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How researchers are using data science to map wage theft - SmartCompany.com.au [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Ready to start coding? What you need to know about Python - TechRepublic [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Women changing the face of science in the Middle East and North Africa - The Jerusalem Post [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Mapping wage theft with data science - The Mandarin [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Platform Market 2021 Analysis Report with Highest CAGR and Major Players like || Dataiku, Bridgei2i Analytics, Feature Labs and More KSU... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Impacting the Pharmaceutical Industry, 2020 Report: Focus on Clinical Trials - Data Science-driven Patient Selection & FDA... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- App Annie Sets New Bar for Mobile Analytics with Data Science Innovations - PRNewswire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science and Analytics Market 2021 to Showing Impressive Growth by 2028 | Industry Trends, Share, Size, Top Key Players Analysis and Forecast... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How Can We Fix the Data Science Talent Shortage? Machine Learning Times - The Predictive Analytics Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Opinion: How to secure the best tech talent | Human Capital - Business Chief [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Following the COVID science: what the data say about the vaccine, social gatherings and travel - Chicago Sun-Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Automated Data Science and Machine Learning Platforms Market Technological Growth and Precise Outlook 2021- Microsoft, MathWorks, SAS, Databricks,... [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- 9 investors discuss hurdles, opportunities and the impact of cloud vendors in enterprise data lakes - TechCrunch [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Rapid Insight to Present at Data Science Salon's Healthcare, Finance, and Technology Virtual Event - PR Web [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Aunalytics Acquires Naveego to Expand Capabilities of its End-to-End Cloud-Native Data Platform to Enable True Digital Transformation for Customers -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Tech Careers: In-demand Courses to watch out for a Lucrative Future - Big Easy Magazine [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Willis Towers Watson enhances its human capital data science capabilities globally with the addition of the Jobable team - GlobeNewswire [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Global Data Science Platform Market 2021 Industry Insights, Drivers, Top Trends, Global Analysis And Forecast to 2027 KSU | The Sentinel Newspaper -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- A Comprehensive Guide to Scikit-Learn - Built In [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Industry VoicesBuilding ethical algorithms to confront biases: Lessons from Aotearoa New Zealand - FierceHealthcare [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- How Intel Employees Volunteered Their Data Science Expertise To Help Costa Rica Save Lives During the Pandemic - CSRwire.com [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Learn About Innovations in Data Science and Analytic Automation on an Upcoming Episode of the Advancements Series - Yahoo Finance [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Symposium aimed at leveraging the power of data science for promoting diversity - Penn State News [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Rochester to advance research in biological imaging through new grant - University of Rochester [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- SoftBank Joins Initiative to Train Diverse Talent in Data Science and AI - Entrepreneur [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Participating in SoftBank/ Correlation One Initiative - Miami - City of Miami [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Increasing Access to Care with the Help of Big Data | Research Blog - Duke Today [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Heres how Data Science & Business Analytics expertise can put you on the career expressway - Times of India [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Yelp data shows almost half a million new businesses opened during the pandemic - CNBC [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Postdoctoral Position in Transient and Multi-messenger Astronomy Data Science in Greenbelt, MD for University of MD Baltimore County/CRESST II -... [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- DefinedCrowd CEO Daniela Braga on the future of AI, training data, and women in tech - GeekWire [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Gartner: AI and data science to drive investment decisions rather than "gut feel" by mid-decade - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Jupyter has revolutionized data science, and it started with a chance meeting between two students - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Working at the intersection of data science and public policy | Penn Today - Penn Today [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- The Future of AI: Careers in Machine Learning - Southern New Hampshire University [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- SMU meets the opportunities of the data-driven world with cutting-edge research and data science programs - The Dallas Morning News [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- Data, Science, and Journalism in the Age of COVID - Pulitzer Center on Crisis Reporting [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]