Lets return to our parade of topics. An infinite series forms the basis for generating functions which is the topic I will cover next.
The trick to understanding Generating Function is to appreciate the usefulness of aLabel Maker.
Imagine that your job is to label all the shelves of newly constructed libraries, warehouses, storerooms, pretty much anything that requires an extensive application of labels. Anytime they build a new warehouse in Boogersville or revamp a library in Belchertown (I am not entirely making these names up), you get a call to label its shelves.
So imagine then that you just got a call to label out a shiny new warehouse. The aisles in the warehouse go from 1 through 26, and each aisle runs 50 spots deep and 5 shelves tall.
You could just print out 6500 labels like so:
A.1.1, A.1.2,,A.1.5, A.2.1,A.2.5,,A50.1,,A50.5, B1.1,B2.1,,B50.5,.. and so on until Z.50.5,
And you could present yourself along with your suitcase stuffed with 6500 florescent dye coated labels at your local airport for a flight to Boogersville. It might take you a while to get through airport security.
Or heres an idea. Why not program the sequence into your label maker? Just carry the label maker with you. At Boogersville, load the machine with a roll of tape, and off you go to the warehouse. At the warehouse, you press a button on the machine, and out flows the entire sequence for aisle A.
Your label maker is the generating function for this, and other sequences like this one:
A.1.1, A.1.2,,A.1.5, A.2.1,A.2.5,,A50.1,,A50.5
In math, a generating function is a mathematical function that you design for generating sequences of your choosing so that you dont have to remember the entire sequence.
If your proof uses a sequence of some kind, its often easier to substitute the sequence with its generating function. That instantly saves you the trouble of lugging around the entire sequence across your proof. Any operations, like differentiation, that you planned to perform on the sequence, you can instead perform them on its generating function.
But wait theres more. All of the above advantages are magnified whenever the generating sequence has a closed form like the formula for e to the power x that we saw earlier.
A really simple generating function is the one shown in the figure below for the following infinite sequence: 1,1,1,1,1,:
As you can see, a generating sequence is actually a series.
A slightly more complex generating sequence, and a famous one, is the one that generates a sequence of (n+1) binomial coefficients:
Each coefficient nCk gives you the number of different ways of choosing k out of n objects. The generating function for this sequence is the binomial expansion of (1 + x) to the power n:
In both examples, its the coefficients of the x terms that constitute the sequence. The x terms raised to different powers are there primarily to keep the coefficients apart from each other. Without the x terms, the summation will just fuse all the coefficients into a single number.
The two examples of generating functions I showed you illustrate applications of the modestly named Ordinary Generating Function. The OGF has the following general form:
Another greatly useful form is the Exponential Generating Function (EGF):
Its called exponential because the value of the factorial term in the denominator increases at an exponential rate causing the values of the successive terms to diminish at an exponential rate.
The EGF has a remarkably useful property: its k-th derivative, when evaluated at x=0 isolates out the k-th element of the sequence a_k. See below for how the 3rd derivative of the above mentioned EGF when evaluated at x=0 gives you the coefficient a_3. All other terms disappear into nothingness:
Our next topic, the Taylor series, makes use of the EGF.
The Taylor series is a way to approximate a function using an infinite series. The Taylor series for the function f(x) goes like this:
In evaluating the first two terms, we use the fact that 0! = 1! = 1.
f(a), f(a), f(a), etc. are the 0-th, 1st, 2nd, etc. derivatives of f(x) evaluated at x=a. f(a) is simple f(a). The value a can be anything as long as the function is infinitely differentiable at x = a, that is, its k-th derivative exists at x = a for all k from 1 through infinity.
In spite of its startling originality, the Taylor series doesnt always work well. It creates poor quality approximations for functions such as 1/x or 1/(1-x) which march off to infinity at certain points in their domain such as at x = 0, and x = 1 respectively. These are functions with singularities in them. The Taylor series also has a hard time keeping up with functions that fluctuate rapidly. And then there are functions whose Taylor series based expansions will converge at a pace that will make continental drifts seem recklessly fast.
But lets not be too withering of the Taylor series imperfections. What is really astonishing about it is that such an approximation works at all!
The Taylor series happens be to one of the most studied, and most used mathematical artifacts.
On some occasions, the upcoming proof of the CLT being one such occasion, youll find it useful to split the Taylor series in two parts as follows:
Here, Ive split the series around the index r. Lets call the two pieces T_r(x) and R_r(x). We can express f(x) in terms of the two pieces as follows:
T_r(x) is known as the Taylor polynomial of order r evaluated at x=a.
R_r(x) is the remainder or residual from approximating f(x) using the Taylor polynomial of order r evaluated at x=a.
By the way, did you notice a glint of similarity between the structure of the above equation, and the general form of a linear regression model consisting of the observed value y, the modeled value _capX, and the residual e?
But lets not dim our focus.
Returning to the topic at hand, Taylors theorem, which well use to prove the Central Limit Theorem, is what gives the Taylors series its legitimacy. Taylors theorem says that as x a, the remainder term R_r(x) converges to 0 faster than the polynomial (x a) raised to the power r. Shaped into an equation, the statement of Taylors theorem looks like this:
One of the great many uses of the Taylor series lies in creating a generating function for the moments of random variable. Which is what well do next.
The k-th moment of a random variable X is the expected value of X raised to the k-th power.
This is known as the k-th raw moment.
The k-th moment of X around some value c is known as the k-th central moment of X. Its simply the k-th raw moment of (X c):
The k-th standardized moment of X is the k-th central moment of X divided by k-th power of the standard deviation of X:
The first 5 moments of X have specific values or meanings attached to them as follows:
After the 4th moment, the interpretations become assuredly murky.
With so many moments flying around, wouldnt it be terrific to have a generating function for them? Thats what the Moment Generating Function (MGF) is for. The Taylor series makes it super-easy to create the MGF. Lets see how to create it.
Well define a new random variable tX where t is a real number. Heres the Taylor series expansion of e to the power tX evaluated at t = 0:
Lets apply the Expectation operator on both sides of the above equation:
By linearity (and scaling) rule of expectation: E(aX + bY) = aE(X) + bE(Y), we can move the Expectation operator inside the summation as follows:
Recall that E(X^k] are the raw moments of X for k = 0,1,23,
Lets compare Eq. (2) with the general form of an Exponential Generating Function:
What do we observe? We see that E(X^k] in Eq. (2) are the coefficients a_k in the EGF. Thus Eq. (2) is the generating function for the moments of X, and so the formula for the Moment Generating Function of X is the following:
The MGF has many interesting properties. Well use a few of them in our proof of the Central Limit Theorem.
Remember how the k-th derivative of the EGF when evaluated at x = 0 gives us the k-th coefficient of the underlying sequence? Well use this property of the EGF to pull out the moments of X from its MGF.
The zeroth derivative of the MGF of X evaluated at t = 0 is obtained by simply substituting t = 0 in Eq. (3). M_X(t=0) evaluates to 1. The first, second, third, etc. derivatives of the MGF of X evaluated at t = 0 are denoted by M_X(t=0), M_X(t=0), M_X(t=0), etc. They evaluate respectively to the first, second, third etc. raw moments of X as shown below:
This gives us our first interesting and useful property of the MGF. The k-th derivative of the MGF evaluated at t = 0 is the k-th raw moment of X.
The second property of MGFs which well find useful in our upcoming proof is the following: if two random variables X and Y have identical Moment Generating Functions, then X and Y have identical Cumulative Distribution Functions:
If X and Y have identical MGFs, it implies that their mean, variance, skewness, kurtosis, and all higher order moments (whatever humanly unfathomable aspects of reality those moments might represent) are all one-is-to-one identical. If every single property exhibited by the shapes of X and Ys CDF is correspondingly the same, youd expect their CDFs to also be identical.
The third property of MGFs well use is the following one that applies to X when X scaled by a and translated by b:
The fourth property of MGFs that well use applies to the MGF of the sum of n independent, identically distributed random variables:
A final result, before we prove the CLT, is the MGF of a standard normal random variable N(0, 1) which is the following (you may want to compute this as an exercise):
Speaking of the standard normal random variable, as shown in Eq. (4), the first, second, third, and fourth derivatives of the MGF of N(0, 1) when evaluated at t = 0 will give you the first moment (mean) as 0, the second moment (variance) as 1, the third moment (skew) as 0, and the fourth moment (kurtosis) as 1.
And with that, the machinery we need to prove the CLT is in place.
Let X_1, X_2,,X_n be n i. i. d. random variables that form a random sample of size n. Assume that weve drawn this sample from a population that has a mean and variance .
Let X_bar_n be the sample mean:
Let Z_bar_n be the standardized sample mean:
The Central Limit Theorem states that as n tends to infinity, Z_bar_n converges in distribution to N(0, 1), i.e. the CDF of Z_bar_n becomes identical to the CDF of N(0, 1) which is often represented by the Greek letter (phi):
To prove this statement, well use the property of the MGF (see Eq. 5) that if the MGFs of X and Y are identical, then so are their CDFs. Here, itll be sufficient to show that as n tends to infinity, the MGF of Z_bar_n converges to the MGF of N(0, 1) which as we know (see Eq. 8) is e to the power t/2. In short, wed want to prove the following identity:
Lets define a random variable Z_k as follows:
Well now express the standardized mean Z_bar_n in terms of Z_k as shown below:
Next, we apply the MGF operator on both sides of Eq. (9):
By construction, Z_1/n, Z_2/n, , Z_n/n are independent random variables. So we can use property (7a) of MGFs which expresses the MGF of the sum of n independent random variables:
By their definition, Z_1/n, Z_2/n, , Z_n/n are also identical random variables. So we award ourselves the liberty to assume the following:
Z_1/n = Z_2/n = = Z_n/n = Z/n.
Therefore using property (7b) we get:
Finally, well also use the property (6) to express the MGF of a random variable (in this case, Z) that is scaled by a constant (in this case, 1/n) as follows:
With that, we have converted our original goal of finding the MGF of Z_bar_n into the goal of finding the MGF of Z/n.
M_Z(t/n) is a function like any other function that takes (t/n) as a parameter. So we can create a Taylor series expansion of M_Z(t/n) at t = 0 as follows:
Next, we split this expansion into two parts. The first part is a finite series of three terms corresponding to k = 0, k = 1, and k = 2. The second part is the remainder of the infinite series:
In the above series, M, M, M, etc. are the 0-th, 1st, 2nd, and so on derivatives of the Moment Generating Function M_Z(t/n) evaluated at (t/n) = 0. Weve seen that these derivatives of the MGF happen to be the 0-th, 1st, 2nd, etc. moments of Z.
The 0-th moment, M(0), is always 1. Recall that Z is, by its construction, a standard normal random variable. Hence, its first moment (mean), M(0), is 0, and its second moment (variance), M(0), is 1. With these values in hand, we can express the above Taylor series expansion as follows:
Another way to express the above expansion of M_Z is as the sum of a Taylor polynomial of order 2 which captures the first three terms of the expansion, and a residue term that captures the summation:
Weve already evaluated the order-2 Taylor polynomial. So our task of finding the MGF of Z is now further reduced to calculating the remainder term R_2.
Before we tackle the task of computing R_2, lets step back and review what we want to prove. We wish to prove that as the sample size n tends to infinity, the standardized sample mean Z_bar_n converges in distribution to the standard normal random variable N(0, 1):
To prove this we realized that it was sufficient to prove that the MGF of Z_bar_n will converge to the MGF of N(0, 1) as n tends to infinity.
And that led us on a quest to find the MGF of Z_bar_n shown first in Eq. (10), and which I am reproducing below for reference:
But it is really the limit of this MGF as n tends to infinity that we not only wish to calculate, but also show it to be equal to e to the power t/2.
To make it to that goal, well unpack and simplify the contents of Eq. (10) by sequentially applying result (12) followed by result (11) as follows:
Here we come to an uncomfortable place in our proof. Look at the equation on the last line in the above panel. You cannot just force the limit on the R.H.S. into the large bracket and zero out the yellow term. The trouble with making such a misinformed move is that there is an n looming large in the exponent of the large bracket the very n that wants to march away to infinity. But now get this: I said you cannot force the limit into the large bracket. I never said you cannot sneak it in.
So we shall make a sly move. Well show that the remainder term R_2 colored in yellow independently converges to zero as n tends to infinity no matter what its exponent is. If we succeed in that endeavor, common-sense reasoning suggests that it will be legal to extinguish it out of the R.H.S., exponent or no exponent.
To show this, well use Taylors theorem which I introduced in Eq. (1), and which I am reproducing below for your reference:
Well bring this theorem to bear upon our pursuit by setting x to (t/n), and r to 2 as follows:
Next, we set a = 0, which instantly allows us to switch the limit:
(t/n) 0, to,
n , as follows:
Now we make an important and not entirely obvious observation. In the above limit, notice how the L.H.S. will tend to zero as long as n tends to infinity independent of what value t has as long as its finite. In other words, the L.H.S. will tend to zero for any finite value of t since the limiting behavior is driven entirely by the (n) in the denominator. With this revelation comes the luxury to drop t from the denominator without changing the limiting behavior of the L.H.S. And while were at it, lets also swing over the (n) to the numerator as follows:
Let this result hang in your mind for a few seconds, for youll need it shortly. Meanwhile, lets return to the limit of the MGF of Z_bar_n as n tends to infinity. Well make some more progress on simplifying the R.H.S of this limit, and then sculpting it into a certain shape:
It may not look like it, but with Eq. (14), we are literally two steps away from proving the Central Limit Theorem.
All thanks to Jacob Bernoullis blast-from-the-past discovery of the product-series based formula for e.
So this will be the point to fetch a few balloons, confetti, party horns or whatever.
Ready?
Here, we go:
View post:
A Proof of the Central Limit Theorem | by Sachin Date | Apr, 2024 - Towards Data Science
- Global Data Science Platform Market Report 2020 Industry Trends, Share and Size, Complete Data Analysis across the Region and Globe, Opportunities and... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science and Machine-Learning Platforms Market Size, Drivers, Potential Growth Opportunities, Competitive Landscape, Trends And Forecast To 2027 -... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Industrial Access Control Market 2020-28 use of data science in agriculture to maximize yields and efficiency with top key players - TechnoWeekly [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- IPG Unveils New-And-Improved Copy For Data: It's Not Your Father's 'Targeting' 11/11/2020 - MediaPost Communications [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Risks and benefits of an AI revolution in medicine - Harvard Gazette [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- UTSA to break ground on $90 million School of Data Science and National Security Collaboration Center - Construction Review [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Addressing the skills shortage in data science and analytics - IT-Online [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science Platform Market Research Growth by Manufacturers, Regions, Type and Application, Forecast Analysis to 2026 - Eurowire [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- 2020 AI and Data Science in Retail Industry Ongoing Market Situation with Manufacturing Opportunities: Amazon Web Services, Baidu Inc., BloomReach... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Endowed Chair of Data Science job with Baylor University | 299439 - The Chronicle of Higher Education [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data scientists gather 'chaos into something organized' - University of Miami [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- AI Update: Provisions in the National Defense Authorization Act Signal the Importance of AI to American Competitiveness - Lexology [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Healthcare Innovations: Predictions for 2021 Based on the Viewpoints of Analytics Thought Leaders and Industry Experts | Quantzig - Business Wire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Poor data flows hampered governments Covid-19 response, says the Science and Technology Committee - ComputerWeekly.com [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Ilia Dub and Jasper Yip join Oliver Wyman's Asia partnership - Consultancy.asia [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Save 98% off the Complete Excel, VBA, and Data Science Certification Training Bundle - Neowin [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science for Social Good Programme helps Ofsted and World Bank - India Education Diary [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Associate Professor of Fisheries Oceanography named a Cooperative Institute for the North Atlantic Region (CINAR) Fellow - UMass Dartmouth [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Rapid Insight To Host Free Webinar, Building on Data: From Raw Piles to Data Science - PR Web [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- This Is the Best Place to Buy Groceries, New Data Finds | Eat This Not That - Eat This, Not That [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Which Technology Jobs Will Require AI and Machine Learning Skills? - Dice Insights [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Companies hiring data scientists in NYC and how much they pay - Business Insider [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Calling all rock stars: hire the right data scientist talent for your business - IDG Connect [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- How Professors Can Use AI to Improve Their Teaching In Real Time - EdSurge [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- BCG GAMMA, in Collaboration with Scikit-Learn, Launches FACET, Its New Open-Source Library for Human-Explainable Artificial Intelligence - PRNewswire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science Platform Market Insights, Industry Outlook, Growing Trends and Demands 2020 to 2025 The Courier - The Courier [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- UBIX and ORS GROUP announce partnership to democratize advanced analytics and AI for small and midmarket organizations - PR Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Praxis Business School is launching its Post Graduate Program in Data Engineering in association with Knowledge Partners - Genpact and LatentView... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- What's So Trendy about Knowledge Management Solutions Market That Everyone Went Crazy over It? | Bloomfire, CSC (American Productivity & Quality... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Want to work in data? Here are 6 skills you'll need Just now - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Data, AI and babies - BusinessLine [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Here's how much Amazon pays its Boston-based employees - Business Insider [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Datavant and Kythera Increase the Value Of Healthcare Data Through Expanded Data Science Platform Partnership - GlobeNewswire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- O'Reilly Analysis Unveils Python's Growing Demand as Searches for Data Science, Cloud, and ITOps Topics Accelerate - Business Wire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Book Review: Hands-On Exploratory Data Analysis with Python - insideBIGDATA [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The 12 Best R Courses and Online Training to Consider for 2021 - Solutions Review [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Software AG's TrendMiner 2021.R1 Release Puts Data Science in the Hands of Operational Experts - Yahoo Finance [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The chief data scientist: Who they are and what they do - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Berkeley's data science leader dedicated to advancing diversity in computing - UC Berkeley [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Awful Earnings Aside, the Dip in Alteryx Stock Is Worth Buying - InvestorPlace [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Why Artificial Intelligence May Not Offer The Business Value You Think - CMSWire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Getting Prices Right in 2021 - Progressive Grocer [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Labelbox raises $40 million for its data labeling and annotation tools - VentureBeat [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How researchers are using data science to map wage theft - SmartCompany.com.au [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Ready to start coding? What you need to know about Python - TechRepublic [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Women changing the face of science in the Middle East and North Africa - The Jerusalem Post [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Mapping wage theft with data science - The Mandarin [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Platform Market 2021 Analysis Report with Highest CAGR and Major Players like || Dataiku, Bridgei2i Analytics, Feature Labs and More KSU... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Impacting the Pharmaceutical Industry, 2020 Report: Focus on Clinical Trials - Data Science-driven Patient Selection & FDA... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- App Annie Sets New Bar for Mobile Analytics with Data Science Innovations - PRNewswire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science and Analytics Market 2021 to Showing Impressive Growth by 2028 | Industry Trends, Share, Size, Top Key Players Analysis and Forecast... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How Can We Fix the Data Science Talent Shortage? Machine Learning Times - The Predictive Analytics Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Opinion: How to secure the best tech talent | Human Capital - Business Chief [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Following the COVID science: what the data say about the vaccine, social gatherings and travel - Chicago Sun-Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Automated Data Science and Machine Learning Platforms Market Technological Growth and Precise Outlook 2021- Microsoft, MathWorks, SAS, Databricks,... [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- 9 investors discuss hurdles, opportunities and the impact of cloud vendors in enterprise data lakes - TechCrunch [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Rapid Insight to Present at Data Science Salon's Healthcare, Finance, and Technology Virtual Event - PR Web [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Aunalytics Acquires Naveego to Expand Capabilities of its End-to-End Cloud-Native Data Platform to Enable True Digital Transformation for Customers -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Tech Careers: In-demand Courses to watch out for a Lucrative Future - Big Easy Magazine [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Willis Towers Watson enhances its human capital data science capabilities globally with the addition of the Jobable team - GlobeNewswire [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Global Data Science Platform Market 2021 Industry Insights, Drivers, Top Trends, Global Analysis And Forecast to 2027 KSU | The Sentinel Newspaper -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- A Comprehensive Guide to Scikit-Learn - Built In [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Industry VoicesBuilding ethical algorithms to confront biases: Lessons from Aotearoa New Zealand - FierceHealthcare [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- How Intel Employees Volunteered Their Data Science Expertise To Help Costa Rica Save Lives During the Pandemic - CSRwire.com [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Learn About Innovations in Data Science and Analytic Automation on an Upcoming Episode of the Advancements Series - Yahoo Finance [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Symposium aimed at leveraging the power of data science for promoting diversity - Penn State News [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Rochester to advance research in biological imaging through new grant - University of Rochester [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- SoftBank Joins Initiative to Train Diverse Talent in Data Science and AI - Entrepreneur [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Participating in SoftBank/ Correlation One Initiative - Miami - City of Miami [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Increasing Access to Care with the Help of Big Data | Research Blog - Duke Today [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Heres how Data Science & Business Analytics expertise can put you on the career expressway - Times of India [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Yelp data shows almost half a million new businesses opened during the pandemic - CNBC [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Postdoctoral Position in Transient and Multi-messenger Astronomy Data Science in Greenbelt, MD for University of MD Baltimore County/CRESST II -... [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- DefinedCrowd CEO Daniela Braga on the future of AI, training data, and women in tech - GeekWire [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Gartner: AI and data science to drive investment decisions rather than "gut feel" by mid-decade - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Jupyter has revolutionized data science, and it started with a chance meeting between two students - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Working at the intersection of data science and public policy | Penn Today - Penn Today [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- The Future of AI: Careers in Machine Learning - Southern New Hampshire University [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- SMU meets the opportunities of the data-driven world with cutting-edge research and data science programs - The Dallas Morning News [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- Data, Science, and Journalism in the Age of COVID - Pulitzer Center on Crisis Reporting [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]