Consistent data processing: a critical prelude to building AI models
The critical nature of precise storage, management, and dissemination of data in the realm of drug discovery is universally recognized. This is because the extraction of meaningful insights depends on the data being readily accessible, standardized, and maintained with the highest possible consistency. However, the implementation of good data practices can vary greatly and depends on the goals, culture, resources, and expertise of research organizations. A critical, yet sometimes underestimated, aspect is the initial engineering task of data preprocessing, which entails transforming raw assay data into a format suitable for downstream analysis. For instance, quantifying sequencing reads from DNA-encoded library screens into counts is required for the subsequent hit identification data science analysis step. Ensuring the correctness of this initial data processing step is imperative, but it may be given too little priority, potentially leading to inaccuracies in subsequent analyses. Standardization of raw data processing is an important step to enable subsequent machine learning studies of DEL data. Currently, this step is done by companies or organizations that generate and screen DEL libraries, and the respective protocols are reported if a study is published (see the Methods section in McCloskey et al. 18). Making data processing pipelines open source will help establish best practices to allow for scrutiny and revisions if necessary. While this foundational step is vital for harnessing data science, it is worth noting that it will not be the focus of this discussion.
In drug discovery, data science presents numerous opportunities to increase the efficiency and speed of the discovery process. Initially, data science facilitates the analysis of huge experimental data, e.g., allowing researchers to identify potential bioactive compounds in large screening data. Machine learning models can be trained on data from DEL or ASMS and, in turn, be used for hit expansion in extensive virtual screens. For example, a model trained to predict the read counts of a specific DEL screen can be used to identify molecules from other large compound libraries, which are likely to bind to the target protein under consideration18.
As the drug discovery process advances to compound optimization, data science can be used to analyse and predict the pharmacokinetic and dynamic properties of potential drug candidates. This includes model-based evaluation of absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. ADMET parameters are crucial in prioritizing and optimizing candidate molecules. Acknowledging their importance, the pharmaceutical industry has invested substantially in developing innovative assays and expanding testing capacities. Such initiatives have enabled the characterization of thousands of compounds through high-quality in-vitro ADMET assays, serving as a prime example of data curation in many pharmaceutical companies37. The knowledge derived from accumulated datasets has the potential to impact research beyond the projects where the data was originally produced. Computational teams utilize these data to understand the principles governing ADMET endpoints as well as to develop in-silico models for the prediction of ADMET properties. These models can help prioritize compound sets lacking undesired liabilities and thus guide researchers in their pursuit to identify the most promising novel drug candidates.
Major approaches in early drug discovery data science encompass classification, regression, or ranking models. They are, for example, employed in drug discovery to classify molecules as mutagenic, predict continuous outcomes such as the binding affinity to a target, and rank compounds in terms of their solubility. Incorporating prior domain knowledge can further enhance the predictive power of these models. Often, assays or endpoints that are correlated can be modelled together, even if they represent independent tasks. By doing so, the models can borrow statistical strength from each individual task, thereby improving overall performance compared to modelling them independently. For example, multitask learning models can predict multiple properties concurrently, as demonstrated by a multitask graph convolutional approach used for predicting physicochemical ADMET endpoints38.
When confronted with training data that have ambiguous labels, utilizing multiple-instance learning can be beneficial. Specifically, in the context of bioactivity models, this becomes relevant when multiple 3D conformations are considered, as the bioactive conformation is often unknown39. A prevalent challenge in applying data science for predictive modelling of chemical substances is choosing a suitable molecular representation. Different representations, such as Continuous Data-Driven Descriptor (CDDD)40 from SMILES strings, molecular fingerprints41 or 3D representations42, capture different facets of the molecular structure and properties43. It is vital to select an appropriate molecular representation as this determines how effectively the nuances of the chemical structures are captured. The choice of the molecular representation influences the prediction performance of various downstream tasks, making it a critical factor in AI-driven drug discovery, as discussed in detail in David et al.s43 review and practical guide on molecular representations in AI-driven drug discovery. Recent studies have found that simple k-nearest neighbours on molecular fingerprints can match or outperform much more complicated deep learning approaches on some compound potency prediction benchmarks44,45. On the other hand, McCloskey et al. 18 have discovered hits by training graph neural networks on data from DEL screens, which are not close to the training set using established molecular similarity calculations. Whether a simple molecular representation, infused with chemical knowledge, or a complex, data-driven deep learning representation is more suitable for the task at hand depends strongly on the training data and needs to be carefully evaluated on a case-by-case basis to obtain a fast and accurate model.
Sound strategies for splitting data into training and test sets are crucial to ensure robust model performance. These strategies include random splitting, which involves dividing the data into training and test sets at random, ensuring a diverse mix of data points in both sets. Temporal splitting arranges data chronologically, training the model on older data and testing it on more recent data, which is useful for predicting future trends. Compound cluster-wise splitting devides training and test sets into distinct chemical spaces. Employing these strategies is essential as inconsistencies between the distributions of training and test data can lead to unreliable model outputs, negatively impacting decision-making processes in drug discovery46.
The successful application of machine learning requires keeping their domain of applicability in mind at all stages. This includes using the techniques described in the previous section for data curation and model development. However, it is equally important to be able to estimate the reliability of a prediction made by an AI model. While generalization to unseen data is theoretically well understood for classic machine learning techniques, it is still an active area of research for deep learning. Neural networks can learn complex data representations through successive nonlinear transformations of the input. As a downside of this flexibility, these models are more sensitive to so-called adversarial examples, i.e., instances outside the domain of applicability that are seemingly close to the training data from the human perspective44. For this reason, deep learning models often fall short of providing reliable confidence estimates for their predictions. Several empirical techniques can be used to obtain uncertainty estimates: Neural network classifiers present a probability distribution indicative of prediction confidence, which is inadequately calibrated but can be adjusted on separate calibration data45. For regression tasks, techniques such as mixture density networks47 or Bayesian dropout48 can be employed to predict distributions instead of single-point estimates. For both classification and regression, the increased variance of a model ensemble indicates that the domain of applicability has been left49.
With the methods described in the previous paragraphs, we possess the necessary methodological stack to establish a data-driven feedback loop from experimental data, a crucial component for implementing active learning at scale. By leveraging predictive models that provide uncertainty estimates, we can create a dynamic and iterative data science process for the design-make-test-analyse (DMTA) cycle. For instance, these predictive models can be utilized to improve the potency of a compound by identifying and prioritizing molecules that are predicted to have high affinity yet are uncertain. Similarly, the models can be used to increase the solubility of a compound by selecting molecules that are likely to be more soluble, thus improving delivery and absorption. This process continuously refines predictions and prioritizes the most informative data points for subsequent experimental testing and retraining the predictive model, thereby enhancing the efficiency and effectiveness of drug discovery efforts. An important additional component is the strategy to pick molecules for subsequent experiments. By intelligently selecting the most informative samples, possibly those that the model is most uncertain about, the picking strategy ensures that each iteration contributes maximally to refining the model and improving predictions. For example, in the context of improving compound potency, the model might prioritize molecules that are predicted to have high potency but with a high degree of uncertainty. These strategies optimize the DMTA process by ensuring that each experimental cycle contributes to the refinement of the predictive model and the overall efficiency of the drug discovery process.
When applying the computational workflow depicted in Fig.3 on large compound libraries, scientists encounter a rather uncommon scenario for machine learning: usually, the training of deep neural networks incurs the highest computational cost since many iterations over large datasets are required, while comparatively few predictions will later be required from the trained model within a similar time frame. However, when inference is to be performed on a vast chemical space, we face the inverse situation. Assessing billions of molecules for their physicochemical parameters and bioactivity is an extremely costly procedure, potentially requiring thousands of graphics processing unit (GPU) hours. Therefore, not only predictive accuracy but also the computational cost of machine learning methods is an important aspect that should be considered when evaluating the practicality of a model.
Computational workflow for predicting molecular properties, starting with molecular structure encoding, followed by model selection and assessment, and concluding with the application of models to virtually screen libraries and rank these molecules for potential experimental validation. The process can be cyclical, allowing iterative refinement of models based on empirical data. ADMET: absorption, distribution, metabolism, and excretiontoxicity. ECFP: Extended Connectivity Fingerprints. CDDD: Continuous Data-Driven Descriptor, a type of molecular representation derived from SMILES strings. Entropy: Shannon entropy descriptors50,51.
Originally posted here:
- Global Data Science Platform Market Report 2020 Industry Trends, Share and Size, Complete Data Analysis across the Region and Globe, Opportunities and... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science and Machine-Learning Platforms Market Size, Drivers, Potential Growth Opportunities, Competitive Landscape, Trends And Forecast To 2027 -... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Industrial Access Control Market 2020-28 use of data science in agriculture to maximize yields and efficiency with top key players - TechnoWeekly [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- IPG Unveils New-And-Improved Copy For Data: It's Not Your Father's 'Targeting' 11/11/2020 - MediaPost Communications [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Risks and benefits of an AI revolution in medicine - Harvard Gazette [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- UTSA to break ground on $90 million School of Data Science and National Security Collaboration Center - Construction Review [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Addressing the skills shortage in data science and analytics - IT-Online [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science Platform Market Research Growth by Manufacturers, Regions, Type and Application, Forecast Analysis to 2026 - Eurowire [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- 2020 AI and Data Science in Retail Industry Ongoing Market Situation with Manufacturing Opportunities: Amazon Web Services, Baidu Inc., BloomReach... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Endowed Chair of Data Science job with Baylor University | 299439 - The Chronicle of Higher Education [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data scientists gather 'chaos into something organized' - University of Miami [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- AI Update: Provisions in the National Defense Authorization Act Signal the Importance of AI to American Competitiveness - Lexology [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Healthcare Innovations: Predictions for 2021 Based on the Viewpoints of Analytics Thought Leaders and Industry Experts | Quantzig - Business Wire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Poor data flows hampered governments Covid-19 response, says the Science and Technology Committee - ComputerWeekly.com [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Ilia Dub and Jasper Yip join Oliver Wyman's Asia partnership - Consultancy.asia [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Save 98% off the Complete Excel, VBA, and Data Science Certification Training Bundle - Neowin [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science for Social Good Programme helps Ofsted and World Bank - India Education Diary [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Associate Professor of Fisheries Oceanography named a Cooperative Institute for the North Atlantic Region (CINAR) Fellow - UMass Dartmouth [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Rapid Insight To Host Free Webinar, Building on Data: From Raw Piles to Data Science - PR Web [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- This Is the Best Place to Buy Groceries, New Data Finds | Eat This Not That - Eat This, Not That [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Which Technology Jobs Will Require AI and Machine Learning Skills? - Dice Insights [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Companies hiring data scientists in NYC and how much they pay - Business Insider [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Calling all rock stars: hire the right data scientist talent for your business - IDG Connect [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- How Professors Can Use AI to Improve Their Teaching In Real Time - EdSurge [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- BCG GAMMA, in Collaboration with Scikit-Learn, Launches FACET, Its New Open-Source Library for Human-Explainable Artificial Intelligence - PRNewswire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science Platform Market Insights, Industry Outlook, Growing Trends and Demands 2020 to 2025 The Courier - The Courier [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- UBIX and ORS GROUP announce partnership to democratize advanced analytics and AI for small and midmarket organizations - PR Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Praxis Business School is launching its Post Graduate Program in Data Engineering in association with Knowledge Partners - Genpact and LatentView... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- What's So Trendy about Knowledge Management Solutions Market That Everyone Went Crazy over It? | Bloomfire, CSC (American Productivity & Quality... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Want to work in data? Here are 6 skills you'll need Just now - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Data, AI and babies - BusinessLine [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Here's how much Amazon pays its Boston-based employees - Business Insider [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Datavant and Kythera Increase the Value Of Healthcare Data Through Expanded Data Science Platform Partnership - GlobeNewswire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- O'Reilly Analysis Unveils Python's Growing Demand as Searches for Data Science, Cloud, and ITOps Topics Accelerate - Business Wire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Book Review: Hands-On Exploratory Data Analysis with Python - insideBIGDATA [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The 12 Best R Courses and Online Training to Consider for 2021 - Solutions Review [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Software AG's TrendMiner 2021.R1 Release Puts Data Science in the Hands of Operational Experts - Yahoo Finance [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The chief data scientist: Who they are and what they do - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Berkeley's data science leader dedicated to advancing diversity in computing - UC Berkeley [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Awful Earnings Aside, the Dip in Alteryx Stock Is Worth Buying - InvestorPlace [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Why Artificial Intelligence May Not Offer The Business Value You Think - CMSWire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Getting Prices Right in 2021 - Progressive Grocer [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Labelbox raises $40 million for its data labeling and annotation tools - VentureBeat [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How researchers are using data science to map wage theft - SmartCompany.com.au [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Ready to start coding? What you need to know about Python - TechRepublic [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Women changing the face of science in the Middle East and North Africa - The Jerusalem Post [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Mapping wage theft with data science - The Mandarin [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Platform Market 2021 Analysis Report with Highest CAGR and Major Players like || Dataiku, Bridgei2i Analytics, Feature Labs and More KSU... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Impacting the Pharmaceutical Industry, 2020 Report: Focus on Clinical Trials - Data Science-driven Patient Selection & FDA... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- App Annie Sets New Bar for Mobile Analytics with Data Science Innovations - PRNewswire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science and Analytics Market 2021 to Showing Impressive Growth by 2028 | Industry Trends, Share, Size, Top Key Players Analysis and Forecast... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How Can We Fix the Data Science Talent Shortage? Machine Learning Times - The Predictive Analytics Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Opinion: How to secure the best tech talent | Human Capital - Business Chief [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Following the COVID science: what the data say about the vaccine, social gatherings and travel - Chicago Sun-Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Automated Data Science and Machine Learning Platforms Market Technological Growth and Precise Outlook 2021- Microsoft, MathWorks, SAS, Databricks,... [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- 9 investors discuss hurdles, opportunities and the impact of cloud vendors in enterprise data lakes - TechCrunch [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Rapid Insight to Present at Data Science Salon's Healthcare, Finance, and Technology Virtual Event - PR Web [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Aunalytics Acquires Naveego to Expand Capabilities of its End-to-End Cloud-Native Data Platform to Enable True Digital Transformation for Customers -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Tech Careers: In-demand Courses to watch out for a Lucrative Future - Big Easy Magazine [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Willis Towers Watson enhances its human capital data science capabilities globally with the addition of the Jobable team - GlobeNewswire [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Global Data Science Platform Market 2021 Industry Insights, Drivers, Top Trends, Global Analysis And Forecast to 2027 KSU | The Sentinel Newspaper -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- A Comprehensive Guide to Scikit-Learn - Built In [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Industry VoicesBuilding ethical algorithms to confront biases: Lessons from Aotearoa New Zealand - FierceHealthcare [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- How Intel Employees Volunteered Their Data Science Expertise To Help Costa Rica Save Lives During the Pandemic - CSRwire.com [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Learn About Innovations in Data Science and Analytic Automation on an Upcoming Episode of the Advancements Series - Yahoo Finance [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Symposium aimed at leveraging the power of data science for promoting diversity - Penn State News [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Rochester to advance research in biological imaging through new grant - University of Rochester [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- SoftBank Joins Initiative to Train Diverse Talent in Data Science and AI - Entrepreneur [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Participating in SoftBank/ Correlation One Initiative - Miami - City of Miami [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Increasing Access to Care with the Help of Big Data | Research Blog - Duke Today [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Heres how Data Science & Business Analytics expertise can put you on the career expressway - Times of India [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Yelp data shows almost half a million new businesses opened during the pandemic - CNBC [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Postdoctoral Position in Transient and Multi-messenger Astronomy Data Science in Greenbelt, MD for University of MD Baltimore County/CRESST II -... [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- DefinedCrowd CEO Daniela Braga on the future of AI, training data, and women in tech - GeekWire [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Gartner: AI and data science to drive investment decisions rather than "gut feel" by mid-decade - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Jupyter has revolutionized data science, and it started with a chance meeting between two students - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Working at the intersection of data science and public policy | Penn Today - Penn Today [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- The Future of AI: Careers in Machine Learning - Southern New Hampshire University [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- SMU meets the opportunities of the data-driven world with cutting-edge research and data science programs - The Dallas Morning News [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- Data, Science, and Journalism in the Age of COVID - Pulitzer Center on Crisis Reporting [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]