February 28, 2024 -While the potential for big data analytics in healthcare has been a hot topic in recent years, the possible risks of using these tools have received just as much attention.
Big data analytics technologies have demonstrated their promise in enhancing multiple areas of care, from medical imaging and chronic disease management to population health and precision medicine. These algorithms could increase the efficiency of care delivery, reduce administrative burdens, and accelerate disease diagnosis.
But despite all the good these tools could achieve, the harm these algorithms could cause is nearly as significant.
Concerns about data access and collection, implicit and explicit bias, and issues with patient and provider trust in analytics technologies have hindered the use of these tools in everyday healthcare delivery.
Healthcare researchers and provider organizations are working to solve these issues, facilitating the use of big data analytics in clinical care for better quality and outcomes.
READ MORE: Data Analytics in Healthcare: Defining the Most Common Terms
In this primer, HealthITAnalytics will explore how improving data quality, addressing bias, prioritizing data privacy, and building providers trust in analytics tools can advance the four types of big data analytics in healthcare.
In healthcare, its widely understood that the success of big data analytics tools depends on the value of the information used to train them. Algorithms trained on inaccurate, poor-quality datacan yield erroneous results, leading to inadequate care delivery.
However, obtaining quality training data is complex and time-intensive, leaving many organizations without the resources to build effective models.
Researchers across the industry are working to overcome this challenge.
In 2019, a team from MITs Computer Science and Artificial Intelligence Library (CSAIL)developedan automated system to gather more data from images to train machine learning models, synthesizing a massive dataset of distinct training examples.
READ MORE: Breaking Down the 4 Types of Healthcare Big Data Analytics
This approach is beneficial for use cases in which high-quality images are available, but there are too few to develop a robust dataset. The synthesized dataset can be used to improve the training of machine learning models, enabling them to detect anatomical structures in new scans.
This image segmentation approach helps address one of the major data quality issues: insufficient data points.
But what about cases with a wealth of relevant data but varying qualities or data synthetization challenges?
In these cases, its useful to begin by defining and exploring some common healthcare analytics concepts.
Data quality, as the name suggests, is a way to measure the reliability and accuracy of the data. Addressing quality is critical to healthcare data generation, collection, and processing.
READ MORE: Top Data Analytics Tools for Population Health Management
If the data collection process yielded a sufficient number of data points but there is a question of quality, stakeholders can look at the datas structure and identify whether converting the structure of the datasets into a common format is appropriate. This is known as data standardization, and it can help ensure that the data are consistent, which is necessary for effective analysis.
Data cleaning flagging and addressing data abnormalities and data normalization, the process of organizing data, can take standardization even further.
Tools like the United States Core Data for Interoperability (USCDI) and USCDI+ can help in cases where a healthcare organization doesnt have enough high-quality data.
In scenarios with a large amount of data, synthesizing the data for analysis creates another potential hurdle.
As seen throughout the COVID-19 pandemic, when data related to the virus became available globally, healthcare leaders faced the challenge of creating high-quality datasets to help researchers answer vital questions about the virus.
In 2020, the White House Office of Science and Technology Policyissueda call to action for experts to synthesize an artificial intelligence (AI) algorithm-friendly COVID-19 dataset to bolster these efforts.
The dataset represents an extensive machine-readable coronavirus literature collection including over 29,000 articles at the time of creation designed to help researchers sift through and analyze the data more quickly.
By promoting collaboration among researchers, healthcare institutions, and other stakeholders, initiatives like this can support the efficient synthesis of large-scale, high-quality datasets.
As healthcare organizations become increasingly reliant on analytics algorithms to help them make care decisions, bias is a major hurdle to the safe and effective deployment of these tools.
Tackling algorithmic bias requires stakeholders to be aware of how biases are introduced and reproduced at every stage of algorithm development and deployment. In many algorithms, bias can be baked in almost immediately if the developers rely on biased data.
The US Department of Health and Human Services (HHS) Office of Minority Health (OMH) indicates that lack of diversity in an algorithms training data is a significant source of bias. Further, bias can be coded into algorithms based on developers beliefs or assumptions, including implicit and explicit biases.
If, for example, a developer incorrectly assumes that symptoms of a particular condition are more common or severe in one population than another, the resulting algorithm could be biased and perpetuate health disparities.
Some have suggested that bringing awareness to potential biases can remedy the issue of algorithmic bias, but research suggests that a more robust approach is required. One study published in the Future Healthcare Journal in 2021 demonstrated that while bias training can help individuals recognize biases in themselves and others, it is not an effective debiasing strategy.
The OMH recommends best practices beyond bias training, encouraging developers to work with diverse stakeholders to ensure that algorithms are adequately developed, validated, and reviewed to maximize utility and minimize harm.
In scenarios where diverse training data for algorithms is unavailable, techniques like synthetic data can help minimize potential biases.
In terms of algorithm deployment and monitoring, the OMH suggests that the tools should be implemented gradually and that users should have a way to provide feedback to the developers for future algorithm improvement.
To this end, developers can work with experts and end-users to understand what clinical measures are important to providers, according to researchers from the University of Massachusetts Amherst.
In recent years, healthcare stakeholders have increasingly developed frameworks and best practices to minimize bias in clinical algorithms.
A panel of experts convened by the Agency for Healthcare Research and Quality (AHRQ) and the National Institute on Minority Health and Health Disparities (NIMHD) published a special communications article in the December 2023 issue of JAMA Network Open outlining five principles to address the impact of algorithm bias on racial and ethnic disparities in healthcare.
The framework guides healthcare stakeholders to mitigate and prevent bias at each stage of an algorithms life cycle by promoting health equity, ensuring algorithm transparency, earning trust by engaging patients and communities, explicitly identifying fairness issues, and establishing accountability for equity and fairness in outcomes from algorithms.
When trained using high-quality data and deployed in settings that will be monitored and adjusted to minimize biases, algorithms can help address disparities in maternal health, preterm births, and social determinants of health (SDOH).
In algorithm development, data privacy and security are high on the list of concerns. Legal, privacy, and cultural obstacles can keep researchers from accessing the large, diverse data sets needed to train analytics technologies.
Over the years, experts have worked to craft approaches that can balance the need for data access against the need to protect patient privacy.
In 2020, a team from the University of Iowa (UI) set out to develop a solution to this problem. With a $1 million grant from the National Science Foundation (NSF), UI researcherscreateda machine learning platform to train algorithms with data from around the world.
The tool is a decentralized, asynchronous solution called ImagiQ, and it relies on an ecosystem of machine learning models so that institutions can select models that work best for their populations. Using the platform, organizations can upload and share the models, but not patient data, with each other.
The researchers indicated that traditional machine learning methods require a centralized database where patient data can be directly accessed for use in model training, but these approaches are often limited by practical issues like information security, patient privacy, data ownership, and the burden on health systems tasked with creating and maintaining those centralized databases.
ImagiQ helps overcome some of these challenges, but it is not the only framework to do so.
Researchers from the University of Pittsburgh Swanson School of Engineering were awarded $1.7 million from the National Institutes of Health (NIH) in 2022 to advance their efforts to develop a federated learning (FL)-based approach to achieve fairness in AI-assisted medical screening tools.
FL is a privacy-protection method that enables researchers to train AI models across multiple decentralized devices or servers holding local data samples without exchanging them.
The approach is useful for improving model performance without compromising data privacy, as AI trained on one institutions data typically does not generalize well on data from another.
However, FL is not a perfect solution, as experts from the University of Southern California (USC) Viterbi School of Engineering pointed out at the 2023 International Workshop on Health Intelligence. They posited that FL brings forth multiple concerns, such as its ability to make predictions based on what its learned from its training data and the hurdles presented by missing data and the data harmonization process.
The research team presented a framework for addressing these challenges, but there are other tools healthcare stakeholders can use to prioritize data privacy, such as confidential computing or blockchain. These tools center on making the data largely inaccessible and resistant to tampering by unauthorized parties.
Alternatives that do not require significant investments in cloud computing or blockchain are also available to stakeholders through privacy-enhancing technologies (PETs), three of which are particularly suited to healthcare use cases.
Algorithmic PETs like encryption, differential privacy, and zero-knowledge proofs protect data privacy by altering how the information is represented while ensuring it is usable. Often, this involves modifying the changeability or traceability of healthcare data.
In contrast, architectural PETs focus on the structure of data or computation environments, rather than how those data are represented, to enable users to exchange information without exchanging any underlying data. Federated learning, secure multi-party computation, and blockchain fall into this PET category.
Augmentation PETs, as the name suggests, augment existing data sources or create fully synthetic ones. This approach can help enhance the availability and utility of data used in healthcare analytics projects. Digital twins and generative adversarial networks are commonly used for this purpose.
But even the most robust data privacy infrastructure cannot compensate for a lack of trust in big data analytics tools.
Just as patients need to trust that analytics algorithms can keep their data safe, providers must trust that these tools can deliver information in a functional, reliable way.
The issue of trustworthy analytics tools has recently taken center stage in conversations around how Americans interact with AI knowingly and unknowingly in their daily lives. Healthcare is one of the industries where advanced technologies present the most significant potential for harm, leading the federal government to begin taking steps to guide the deployment and use of algorithms.
In October 2023, President Joe Biden signed theExecutive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, which outlines safety, security, privacy, equity, and other standards for how industry and government should approach AI innovation.
The orders directives are broad, as they are designed to apply to all US industries, but it does lay out some industry-specific directives for those looking at how it will impact healthcare. Primarily, the executive order provides a framework for creating standards, laws, and regulations around AI and establishes a roadmap of subsequent actions that government agencies, like HHS, must take to build such a framework.
However, this process will take months, and more robust regulation of healthcare algorithms could take even longer, leading industry stakeholders to develop their own best practices for using analytics technologies in healthcare.
One stakeholder is the National Academy of Medicine (NAM) Artificial Intelligence Code of Conduct (AICC), which represents a collaborative effort among healthcare, research, and patient advocacy groups to create a national architecture for responsible AI use in healthcare.
In a 2024 interview with HealthITAnalytics, NAM leadership emphasized that this governance infrastructure is necessary to gain trust and improve healthcare as advanced technologies become more ubiquitous in care settings.
However, governance structure must be paired with education and clinician support to obtain buy-in from providers.
Some of this can start early, as evidenced by recent work from the University of Texas (UT) health system to incorporate AI training into medical school curriculum. Having staff members dedicated to spearheading analytics initiatives, such as a chief analytics officer, is another approach that healthcare organizations can use to make providers feel more comfortable with these tools.
These staff can also work to bolster trust at the enterprise level by focusing on creating a healthcare data culture, gaining provider buy-in from the top down, and having strategies to address concerns about clinician overreliance on analytics technologies.
With healthcare organizations increasingly leveraging big data analytics tools for enhanced insights and streamlined care processes, overcoming data quality, bias, privacy, and security issues and fostering user trust will be critical for successfully using these models in clinical care.
As research evolves around AI, machine learning, and other analytics algorithms, the industry will keep refining these tools for improved patient care.
Follow this link:
4 Emerging Strategies to Advance Big Data Analytics in Healthcare - HealthITAnalytics.com
- Global Data Science Platform Market Report 2020 Industry Trends, Share and Size, Complete Data Analysis across the Region and Globe, Opportunities and... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science and Machine-Learning Platforms Market Size, Drivers, Potential Growth Opportunities, Competitive Landscape, Trends And Forecast To 2027 -... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Industrial Access Control Market 2020-28 use of data science in agriculture to maximize yields and efficiency with top key players - TechnoWeekly [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- IPG Unveils New-And-Improved Copy For Data: It's Not Your Father's 'Targeting' 11/11/2020 - MediaPost Communications [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Risks and benefits of an AI revolution in medicine - Harvard Gazette [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- UTSA to break ground on $90 million School of Data Science and National Security Collaboration Center - Construction Review [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Addressing the skills shortage in data science and analytics - IT-Online [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data Science Platform Market Research Growth by Manufacturers, Regions, Type and Application, Forecast Analysis to 2026 - Eurowire [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- 2020 AI and Data Science in Retail Industry Ongoing Market Situation with Manufacturing Opportunities: Amazon Web Services, Baidu Inc., BloomReach... [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Endowed Chair of Data Science job with Baylor University | 299439 - The Chronicle of Higher Education [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- Data scientists gather 'chaos into something organized' - University of Miami [Last Updated On: November 11th, 2020] [Originally Added On: November 11th, 2020]
- AI Update: Provisions in the National Defense Authorization Act Signal the Importance of AI to American Competitiveness - Lexology [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Healthcare Innovations: Predictions for 2021 Based on the Viewpoints of Analytics Thought Leaders and Industry Experts | Quantzig - Business Wire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Poor data flows hampered governments Covid-19 response, says the Science and Technology Committee - ComputerWeekly.com [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Ilia Dub and Jasper Yip join Oliver Wyman's Asia partnership - Consultancy.asia [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Save 98% off the Complete Excel, VBA, and Data Science Certification Training Bundle - Neowin [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science for Social Good Programme helps Ofsted and World Bank - India Education Diary [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Associate Professor of Fisheries Oceanography named a Cooperative Institute for the North Atlantic Region (CINAR) Fellow - UMass Dartmouth [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Rapid Insight To Host Free Webinar, Building on Data: From Raw Piles to Data Science - PR Web [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- This Is the Best Place to Buy Groceries, New Data Finds | Eat This Not That - Eat This, Not That [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Which Technology Jobs Will Require AI and Machine Learning Skills? - Dice Insights [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Companies hiring data scientists in NYC and how much they pay - Business Insider [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Calling all rock stars: hire the right data scientist talent for your business - IDG Connect [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- How Professors Can Use AI to Improve Their Teaching In Real Time - EdSurge [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- BCG GAMMA, in Collaboration with Scikit-Learn, Launches FACET, Its New Open-Source Library for Human-Explainable Artificial Intelligence - PRNewswire [Last Updated On: January 12th, 2021] [Originally Added On: January 12th, 2021]
- Data Science Platform Market Insights, Industry Outlook, Growing Trends and Demands 2020 to 2025 The Courier - The Courier [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- UBIX and ORS GROUP announce partnership to democratize advanced analytics and AI for small and midmarket organizations - PR Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Praxis Business School is launching its Post Graduate Program in Data Engineering in association with Knowledge Partners - Genpact and LatentView... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- What's So Trendy about Knowledge Management Solutions Market That Everyone Went Crazy over It? | Bloomfire, CSC (American Productivity & Quality... [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Want to work in data? Here are 6 skills you'll need Just now - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Data, AI and babies - BusinessLine [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Here's how much Amazon pays its Boston-based employees - Business Insider [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Datavant and Kythera Increase the Value Of Healthcare Data Through Expanded Data Science Platform Partnership - GlobeNewswire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- O'Reilly Analysis Unveils Python's Growing Demand as Searches for Data Science, Cloud, and ITOps Topics Accelerate - Business Wire [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Book Review: Hands-On Exploratory Data Analysis with Python - insideBIGDATA [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The 12 Best R Courses and Online Training to Consider for 2021 - Solutions Review [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Software AG's TrendMiner 2021.R1 Release Puts Data Science in the Hands of Operational Experts - Yahoo Finance [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- The chief data scientist: Who they are and what they do - Siliconrepublic.com [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Berkeley's data science leader dedicated to advancing diversity in computing - UC Berkeley [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Awful Earnings Aside, the Dip in Alteryx Stock Is Worth Buying - InvestorPlace [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Why Artificial Intelligence May Not Offer The Business Value You Think - CMSWire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Getting Prices Right in 2021 - Progressive Grocer [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Labelbox raises $40 million for its data labeling and annotation tools - VentureBeat [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How researchers are using data science to map wage theft - SmartCompany.com.au [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Ready to start coding? What you need to know about Python - TechRepublic [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Women changing the face of science in the Middle East and North Africa - The Jerusalem Post [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Mapping wage theft with data science - The Mandarin [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Platform Market 2021 Analysis Report with Highest CAGR and Major Players like || Dataiku, Bridgei2i Analytics, Feature Labs and More KSU... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science Impacting the Pharmaceutical Industry, 2020 Report: Focus on Clinical Trials - Data Science-driven Patient Selection & FDA... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- App Annie Sets New Bar for Mobile Analytics with Data Science Innovations - PRNewswire [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- Data Science and Analytics Market 2021 to Showing Impressive Growth by 2028 | Industry Trends, Share, Size, Top Key Players Analysis and Forecast... [Last Updated On: February 12th, 2021] [Originally Added On: February 12th, 2021]
- How Can We Fix the Data Science Talent Shortage? Machine Learning Times - The Predictive Analytics Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Opinion: How to secure the best tech talent | Human Capital - Business Chief [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Following the COVID science: what the data say about the vaccine, social gatherings and travel - Chicago Sun-Times [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Automated Data Science and Machine Learning Platforms Market Technological Growth and Precise Outlook 2021- Microsoft, MathWorks, SAS, Databricks,... [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- 9 investors discuss hurdles, opportunities and the impact of cloud vendors in enterprise data lakes - TechCrunch [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Rapid Insight to Present at Data Science Salon's Healthcare, Finance, and Technology Virtual Event - PR Web [Last Updated On: February 14th, 2021] [Originally Added On: February 14th, 2021]
- Aunalytics Acquires Naveego to Expand Capabilities of its End-to-End Cloud-Native Data Platform to Enable True Digital Transformation for Customers -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Tech Careers: In-demand Courses to watch out for a Lucrative Future - Big Easy Magazine [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Willis Towers Watson enhances its human capital data science capabilities globally with the addition of the Jobable team - GlobeNewswire [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Global Data Science Platform Market 2021 Industry Insights, Drivers, Top Trends, Global Analysis And Forecast to 2027 KSU | The Sentinel Newspaper -... [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- A Comprehensive Guide to Scikit-Learn - Built In [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Industry VoicesBuilding ethical algorithms to confront biases: Lessons from Aotearoa New Zealand - FierceHealthcare [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- How Intel Employees Volunteered Their Data Science Expertise To Help Costa Rica Save Lives During the Pandemic - CSRwire.com [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Learn About Innovations in Data Science and Analytic Automation on an Upcoming Episode of the Advancements Series - Yahoo Finance [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Symposium aimed at leveraging the power of data science for promoting diversity - Penn State News [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Rochester to advance research in biological imaging through new grant - University of Rochester [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- SoftBank Joins Initiative to Train Diverse Talent in Data Science and AI - Entrepreneur [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Participating in SoftBank/ Correlation One Initiative - Miami - City of Miami [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Increasing Access to Care with the Help of Big Data | Research Blog - Duke Today [Last Updated On: February 22nd, 2021] [Originally Added On: February 22nd, 2021]
- Heres how Data Science & Business Analytics expertise can put you on the career expressway - Times of India [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Yelp data shows almost half a million new businesses opened during the pandemic - CNBC [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Postdoctoral Position in Transient and Multi-messenger Astronomy Data Science in Greenbelt, MD for University of MD Baltimore County/CRESST II -... [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- DefinedCrowd CEO Daniela Braga on the future of AI, training data, and women in tech - GeekWire [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Gartner: AI and data science to drive investment decisions rather than "gut feel" by mid-decade - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Jupyter has revolutionized data science, and it started with a chance meeting between two students - TechRepublic [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- Working at the intersection of data science and public policy | Penn Today - Penn Today [Last Updated On: March 14th, 2021] [Originally Added On: March 14th, 2021]
- The Future of AI: Careers in Machine Learning - Southern New Hampshire University [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- SMU meets the opportunities of the data-driven world with cutting-edge research and data science programs - The Dallas Morning News [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]
- Data, Science, and Journalism in the Age of COVID - Pulitzer Center on Crisis Reporting [Last Updated On: April 4th, 2021] [Originally Added On: April 4th, 2021]