Single-cell RNA sequencing of murine hearts for studying the … – Nature.com

Mohan, R. A., Boukens, B. J. & Christoffels, V. M. Developmental origin of the cardiac conduction system: Insight from lineage tracing. Pediatr. Cardiol. 39, 11071114 (2018).

Article PubMed PubMed Central Google Scholar

van Eif, V. W. W., Devalla, H. D., Boink, G. J. J. & Christoffels, V. M. Transcriptional regulation of the cardiac conduction system. Nat. Rev. Cardiol. 15, 617630 (2018).

Article PubMed Google Scholar

Boyett, M. R., Honjo, H. & Kodama, I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47, 658687 (2000).

Article CAS PubMed Google Scholar

Goodyer, W. R. et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ. Res. 125, 379397 (2019).

Article CAS PubMed PubMed Central Google Scholar

Tyser, R. C. V. et al. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. eLife 5, e17113 (2016).

Article PubMed PubMed Central Google Scholar

Virgh, S. & Challice, C. E. The development of the conduction system in the mouse embryo heart. Dev. Biol. 80, 2845 (1980).

Article PubMed Google Scholar

Meysen, S. et al. Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev. Biol. 303, 740753 (2007).

Article CAS PubMed Google Scholar

Daniszewski, M. et al. Single cell rna sequencing of stem cell-derived retinal ganglion cells. Sci Data 5, 180013 (2018).

Article CAS PubMed PubMed Central Google Scholar

Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236240 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748752 (2013).

Article CAS PubMed Google Scholar

Kolodziejczyk, A. A. et al. Single cell rna-sequencing of pluripotent states unlocks modular transcriptional variation. Cell stem cell 17, 471485 (2015).

Article CAS PubMed PubMed Central Google Scholar

Etzrodt, M., Endele, M. & Schroeder, T. Quantitative single-cell approaches to stem cell research. Cell stem cell 15, 546558 (2014).

Article CAS PubMed Google Scholar

Li, G. et al. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev. Cell 39, 491507 (2016).

Article CAS PubMed PubMed Central Google Scholar

Lescroart, F. et al. Defining the earliest step of cardiovascular lineage segregation by single-cell rna-seq. Science 359, 11771181 (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

Goodyer, W. R. & Wu, S. M. Fates aligned: Origins and mechanisms of ventricular conduction system and ventricular wall development. Pediatr. Cardiol. 39, 10901098 (2018).

Article PubMed PubMed Central Google Scholar

Xiong, H. et al. Single-cell transcriptomics reveals chemotaxis-mediated intraorgan crosstalk during cardiogenesis. Circ. Res. 125, 398410 (2019).

Article CAS PubMed Google Scholar

Tyser, R. C. V. et al. Characterization of a common progenitor pool of the epicardium and myocardium. Science 371, eabb2986 (2021).

Article CAS PubMed Google Scholar

Feng, W., Przysinda, A. & Li, G. Multiplexed single cell mrna sequencing analysis of mouse embryonic cells. J. Vis. Exp. (2020).

Wu, B. et al. Single-cell rna sequencing reveals the mechanism of sonodynamic therapy combined with a ras inhibitor in the setting of hepatocellular carcinoma. J. Nanobiotechnology 19, 177 (2021).

Article PubMed PubMed Central Google Scholar

Osorio, D. & Cai, J. J. Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell rna-sequencing data quality control. Bioinformatics 37, 963967 (2021).

Article CAS PubMed Google Scholar

Galow, A. M. et al. Quality control in scrna-seq can discriminate pacemaker cells: The mtrna bias. Cell Mol. Life Sci. 78, 65856592 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zhao, D. C. et al. Single-cell rna sequencing reveals distinct gene expression patterns in glucose metabolism of human preimplantation embryos. Reprod. Fertil. Dev. 31, 237247 (2019).

Article CAS PubMed Google Scholar

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell rna-seq data using regularized negative binomial regression. Genome. Biol. 20, 296 (2019).

Article CAS PubMed PubMed Central Google Scholar

Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell rna sequencing data. Genome Biol. 21, 12 (2020).

Article CAS PubMed PubMed Central Google Scholar

Nygaard, V., Rdland, E. A. & Hovig, E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics (Oxford, England) 17, 2939 (2016).

Article MathSciNet PubMed Google Scholar

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495502 (2015).

Article CAS PubMed PubMed Central Google Scholar

Ren, H. et al. NCBI Sequence Read Archive https://identifiers.org/ncbi/bioproject:PRJNA890252 (2023).

Ren, H. et al. GEO https://identifiers.org/geo/GSE230531 (2023).

Gollob, M. H. et al. Somatic mutations in the connexin 40 gene (gja5) in atrial fibrillation. N. Engl. J. Med. 354, 26772688 (2006).

Article CAS PubMed Google Scholar

Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600610 (2018).

Article CAS PubMed Google Scholar

vanEif, V. W. W., Stefanovic, S., Mohan, R. A. & Christoffels, V. M. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim. Biophys. Acta. Mol. Cell Res. 1867, 118509 (2020).

Article CAS Google Scholar

Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166180 (2018).

Article CAS PubMed Google Scholar

Lee, K. et al. Peptide-enhanced mrna transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int. J. Nanomedicine 10, 18411854 (2015).

CAS PubMed PubMed Central Google Scholar

Guo, M., Wang, H., Potter, S. S., Whitsett, J. A. & Xu, Y. Sincera: A pipeline for single-cell rna-seq profiling analysis. PLoS Comput. Biol. 11, e1004575 (2015).

Article ADS PubMed PubMed Central Google Scholar

Amado, N. et al. Mp44-09 understanding prune belly syndrome at single cell resolution. J. Urol. 206, e796 (2021).

Article PubMed Google Scholar

Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698702 (2016).

Article ADS CAS PubMed PubMed Central Google Scholar

Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289293 (2016).

Article ADS CAS PubMed PubMed Central Google Scholar

Gromova, A. et al. Lacrimal gland repair using progenitor cells. Stem Cells Transl. Med. 6, 8898 (2017).

Article CAS PubMed Google Scholar

Challen, G. A. et al. Identifying the molecular phenotype of renal progenitor cells. J. Am. Soc. Nephrol. 15, 23442357 (2004).

Article CAS PubMed Google Scholar

See the original post:

Single-cell RNA sequencing of murine hearts for studying the ... - Nature.com

Related Posts

Comments are closed.