Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV … – Nature.com

Tao, Y., Zongyang, Z., Jun, Z., Xinghua, C. & Fuqiang, Z. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network. J. Syst. Eng. Electron. 32(4), 841853 (2021).

Article Google Scholar

Chen, C., Liu, B., Wan, S., Qiao, P. & Pei, Q. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 22(3), 18401852 (2021).

Article Google Scholar

Yang, Z. Pedestrian detection for intelligent vehicle based on bilayer difference features algorithm. In International Conference on Transportation Information and Safety (ICTIS), 337340 (2015).

Prajwal, P., Prajwal, D., Harish, D. H., Gajanana, R., Jayasri, B. S. & Lokesh, S. Object detection in self driving cars using deep learning. In International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 17 (2021).

Wang, X., Bai, X., Liu, W. & Latecki, L. J. Feature context for image classification and object detection. In Computer Vision and Pattern Recognition Conference 2011. IEEE, 961968 (2011).

Kim, H., Lee, Y., Yim, B., Park, E. & Kim, H. On-road object detection using deep neural network. In International Conference on Consumer Electronics-Asia (ICCE-Asia), 14 (2016).

Byk, M., Duvar, R. & Urhan, O. Deep learning based vehicle detection with images taken from unmanned air vehicle. In Innovations in Intelligent Systems and Applications Conference (ASYU) 14 (2020).

Xu, Y., Yu, G., Wu, X., Wang, Y. & Ma, Y. An enhanced ViolaJones vehicle detection method from unmanned aerial vehicles imagery. IEEE Trans. Intell. Transp. Syst. 18(7), 18451856 (2017).

Article Google Scholar

Jonnalagadda, M., Taduri, S. & Reddy, R. RealTime traffic management system using object detection based signal logic. In Applied Imagery Pattern Recognition Workshop (AIPR) 15 (2020).

Zhang, X. & Zhu, X. Vehicle detection in the aerial infrared images via an improved Yolov3 network. In International Conference on Signal and Image Processing (ICSIP), 372376 (2019).

Avola, D. et al. A UAV video dataset for mosaicking and change detection from low-altitude flights. IEEE Trans. Syst. Man Cybern. Syst. 50(6), 21392149 (2020).

Article Google Scholar

Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman, A. The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303338 (2010).

Article Google Scholar

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Deva, Dollr, P. & Zitnick, C. L. Microsoft COCO: Common objects in context. In European conference on computer vision. Springer 740755 (2014).

Deng, J., Dong, W., Socher, R., Li, L. J., Kai, L. & Li, F. ImageNet: A large-scale hierarchical image database. Conference on Computer Vision and Pattern Recognition 248255 (2009).

Puri, D. COCO dataset stuff segmentation challenge. In International Conference On Computing, Communication, Control And Automation (ICCUBEA) 15 (2019).

Borji, A. Complementary datasets to COCO for object detection. In arXiv:2206.11473 (arXiv preprint) (2022).

Cao, K .Y. Cui, X. & Piao, J. C. Smaller target detection algorithms based on YOLOv5 in safety helmet wearing detection. IN International Conference on Robotics and Computer Vision (ICRCV) 154158 (2022).

Du, D., Zhu, P., Wen, L., Bian, X., Lin, H., Hu, Q., Peng, T., Zheng, J., Wang, X., Zhang, Y. & Zhang, L. VisDrone-DET2019: The vision meets drone object detection in image challenge results. In International Conference on Computer Vision Workshop (ICCVW) 213226 (2019).

Mueller, M., Smith, N. & Ghanem, B. A benchmark and simulator for UAV tracking. In European Conference on Computer Vision 445461 (Springer, 2016).

Liu, Z., Gao, G., Sun, L. & Fang, Z. HRDNet: High-resolution detection network for small objects. In International Conference on Multimedia and Expo (ICME) 16 (2021).

Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q. & Ling, H. Detection and tracking meet drones challenge. arXiv:2001.06303 (arXiv preprint) (2020).

Xie, X. & Lu, G. A research of object detection on UAVs aerial images. In International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE) 342345 (2021).

Misra, D. Mish: A self regularized non-monotonic activation function. arXiv:1908.08681 (arXiv preprint) (2019).

Jana, A. P., Biswas, A. & Mohana, YOLO based detection and classification of objects in video records. In International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT) 24482452 (2018).

Gongguo, Z. & Junhao, W. An improved small target detection method based on Yolov3. International Conference on Electronics, Circuits and Information Engineering (ECIE) 220223 (2021).

Xu, Q. et al. Research on small target detection in driving scenarios based on improved Yolo network. IEEE Access 8, 2757427583 (2020).

Article Google Scholar

Mahendru, M. & Dubey, S. K. Real time object detection with audio feedback using Yolo vs. Yolov3. In International Conference on Cloud Computing, Data Science & Engineering (Confluence) 734740 (2021).

Rao, Y., Zhao, W., Tang, Y., Zhou, J., Lim, S. N. & Lu, J. Hornet: Efficient high-order spatial interactions with recursive gated convolutions. arXiv:2207.14284 (arXiv preprint) (2022).

Geng, Z. & Chen, G. A Novel real-time grasping method cobimbed with YOLO and GDFCN. In Joint International Information Technology and Artificial Intelligence Conference (ITAIC) 500505 (2022).

Xie, J., Pang, Y., Nie, J., Cao, J. & Han, J. Latent feature pyramid network for object detection. In IEEE Transactions on Multimedia 1 (2022).

Xing, H., Wang, S., Zheng, D. & Zhao, X. Dual attention based feature pyramid network. China Commun. 17(8), 242252 (2020).

Article Google Scholar

Bayhan, E., Ozkan, Z., Namdar, M. & Basgumus, A. Deep learning based object detection and recognition of unmanned aerial vehicles. In International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 15 (2021).

Noori, M., Mohammadi, S., Majelan, G. S., Bahri, A. & Havaei, M. DFNet: Discriminative feature extraction and integration network for salient object detection. Eng. Appl. Artif. Intell. 89, 103419 (2020).

Article Google Scholar

Yang, T. & Tong, C. Small traffic sign detector in real-time based on improved YOLO-v4. In International Conference on High Performance Computing and Communications; 7th International Conference on Data Science and Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (HPCC/DSS/SmartCity/DependSys) 13181324 (2021).

Zhu, P. Convolutional neural networks based study and application for multicategory skin cancer detection. In International Conference on Electronic Communication and Artificial Intelligence (IWECAI) 558561 (2022).

zbay, M. & ahingil, M. C. A fast and robust automatic object detection algorithm to detect small objects in infrared images. In Signal Processing and Communications Applications Conference (SIU) 14 (2017).

Xing, C., Liang, X. & Yang, R. Compact one-stage object detection network. In International Conference on Computer Science and Network Technology (ICCSNT) 115118 (2020).

Luo, J., Yang, Z., Li, S. & Wu, Y. FPCB surface defect detection: A decoupled two-stage object detection framework. IEEE Trans. Instrum. Meas. 70, 111 (2021).

Google Scholar

Bai, T. Analysis on two-stage object detection based on convolutional neural networks. In International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE) 321325 (2020).

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 22782324 (1998).

Article Google Scholar

Iandola, N. F., Han, S., Moskewicz, W. M., Ashraf, K., Dally, J. W. & Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv:1602.07360 (arXiv preprint) (2016).

Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition 580587 (2014).

Girshick, R. Fast R-CNN. In IEEE International Conference on Computer Vision (ICCV) 14401448 (2015).

Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 11371149 (2017).

Article PubMed Google Scholar

He, K., Gkioxari, G., Dollr, P. & Girshick, R. Mask R-CNN. In IEEE International Conference on Computer Vision (ICCV) 29802988 (2017).

Minaee, S. et al. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 35233542 (2022).

PubMed Google Scholar

Zhao, Z. Q., Zheng, P., Xu, S. T. & Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 32123232 (2019).

Article PubMed Google Scholar

Vinod, G. & Padmapriya, G. An adaptable real-time object detection for traffic surveillance using R-CNN over CNN with improved accuracy. In International Conference on Business Analytics for Technology and Security (ICBATS) 14 (2022).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779788 (2016).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. Fu, Y. C. & Berg, A. C. Ssd: Single shot multibox detector. In European Conference on Computer Vision 2137 (2016).

Lin, T. Y., Goyal, P., Girshick, R., He, K. & Dollr, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318327 (2020).

Article PubMed Google Scholar

Ma, Y., Yang, J., Li, Z., & Ma, Z. YOLO-cigarette: An effective YOLO network for outdoor smoking real-time object detection. In International Conference on Advanced Cloud and Big Data (CBD) 121126 (2022).

Redmon, J. & Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017).

Redmon, J. & Farhadi, A. Yolov3: An incremental improvement. In arXiv:1804.02767 (arXiv preprint) (2018).

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. Yolov4: Optimal speed and accuracy of object detection. In arXiv:2004.10934 (arXiv preprint) (2020).

Zhu, X., Lyu, S., Wang, X. & Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 27782788 (2021).

Wang, C. Y., Bochkovskiy, A. & Liao, H. Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696 (arXiv preprint) (2022).

Qiu, M., Huang, L. & Tang, B. H. ASFF-YOLOv5: Multielement detection method for road traffic in UAV images based on multiscale feature fusion. Remote Sens. 14(14), 3498 (2022).

Article ADS Google Scholar

Sudars, K., Namatvs, I., Judvaitis, J., Balas, R., ikuins, A., Peter, A., Strautia, S., Kaufmane, E. & Kalnia, I. YOLOv5 deep neural network for quince and raspberry detection on RGB images. In Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW) 1922 (2022).

Liu, W., Quijano, K. & Crawford, M. M. YOLOv5-tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 15, 80858094 (2022).

Article ADS Google Scholar

Originally posted here:

Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV ... - Nature.com

Related Posts

Comments are closed.