Genome mining shows that retroviruses are pervasively invading … – Nature.com

Johnson, W. E. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol 17, 355370 (2019).

Article CAS PubMed Google Scholar

Stoye, J. P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol 10, 395406 (2012).

Article CAS PubMed Google Scholar

Zheng, J., Wei, Y. & Han, G. Z. The diversity and evolution of retroviruses: perspectives from viral fossils. Virol. Sin. 37, 1118 (2022).

Article PubMed PubMed Central Google Scholar

Belshaw, R. et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 48944899 (2004).

Article ADS CAS PubMed PubMed Central Google Scholar

Zheng, J., Wang, J., Gong, Z. & Han, G. Z. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog. 17, e1009730 (2021).

Article CAS PubMed PubMed Central Google Scholar

Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu Rev. Genet 42, 709732 (2008).

Article CAS PubMed Google Scholar

Tarlinton, R. E., Meers, J. & Young, P. R. Retroviral invasion of the koala genome. Nature 442, 7981 (2006).

Article ADS CAS PubMed Google Scholar

IUCN. The IUCN Red List of Threatened Species. Version 2022-1, https://www.iucnredlist.org, Accessed on 21 Nov 2022 (2022).

Wildschutte, J. H. et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc. Natl. Acad. Sci. USA 113, E2326E2334 (2016).

Article CAS PubMed PubMed Central Google Scholar

Holloway, J. R., Williams, Z. H., Freeman, M. M., Bulow, U. & Coffin, J. M. Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. Proc. Natl. Acad. Sci. USA 116, 13371346 (2019).

Article ADS CAS PubMed PubMed Central Google Scholar

Coffin, J. et al. ICTV virus taxonomy profile: retroviridae 2021. J. Gen. Virol. 102, 001712 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gifford, R. J. et al. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 15, 59 (2018).

Article PubMed PubMed Central Google Scholar

Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol. 24, 10421051 (2010).

Article PubMed Google Scholar

Beck, J. A. et al. Genealogies of mouse inbred strains. Nat. Genet 24, 2325 (2000).

Article CAS PubMed Google Scholar

Barluenga, M., Stolting, K. N., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719723 (2006).

Article ADS CAS PubMed Google Scholar

Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106111 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Wang, M. S. et al. 863 genomes reveal the origin and domestication of chicken. Cell Res. 30, 693701 (2020).

Article CAS PubMed PubMed Central Google Scholar

Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain 2, 445456 (2019).

Article PubMed PubMed Central Google Scholar

Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990993 (2008).

Article ADS CAS PubMed PubMed Central Google Scholar

Subramanian, R. P., Wildschutte, J. H., Russo, C. & Coffin, J. M. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8, 90 (2011).

Article CAS PubMed PubMed Central Google Scholar

Turner, G. et al. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11, 15311535 (2001).

Article CAS PubMed Google Scholar

Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 40234037.e18 (2022).

Article CAS PubMed Google Scholar

Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earths RNA virome. Science 376, 156162 (2022).

Article ADS CAS PubMed Google Scholar

Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432436 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Hayward, A., Cornwallis, C. K. & Jern, P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl. Acad. Sci. USA 112, 464469 (2015).

Article ADS CAS PubMed Google Scholar

Joyce, B. A., Blyton, M. D. J., Johnston, S. D., Young, P. R. & Chappell, K. J. Koala retrovirus genetic diversity and transmission dynamics within captive koala populations. Proc. Natl. Acad. Sci. USA 118, e2024021118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Herr, W. & Gilbert, W. Germ-line MuLV reintegrations in AKR/J mice. Nature 296, 865868 (1982).

Article ADS CAS PubMed Google Scholar

Jenkins, N. A. & Copeland, N. G. High frequency germline acquisition of ecotropic MuLV proviruses in SWR/J-RF/J hybrid mice. Cell 43, 811819 (1985).

Article CAS PubMed Google Scholar

McEwen, G. K. et al. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat. Commun. 12, 1316 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Xu, W. et al. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proc. Natl. Acad. Sci. USA 110, 1154711552 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet 20, 760772 (2019).

Article CAS PubMed Google Scholar

Campbell, I. M. et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol. 12, 74 (2014).

Article PubMed PubMed Central Google Scholar

Hughes, J. F. & Coffin, J. M. Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat. Genet 29, 487489 (2001).

Article CAS PubMed Google Scholar

Roca, A. L., Pecon-Slattery, J. & OBrien, S. J. Genomically intact endogenous feline leukemia viruses of recent origin. J. Virol. 78, 43704375 (2004).

Article CAS PubMed PubMed Central Google Scholar

Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).

Article CAS PubMed PubMed Central Google Scholar

Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).

Article Google Scholar

Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput Biol. Bioinform 10, 645656 (2013).

Article PubMed Google Scholar

Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70D74 (2011).

Article CAS PubMed Google Scholar

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772780 (2013).

Article CAS PubMed PubMed Central Google Scholar

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

Article ADS PubMed PubMed Central Google Scholar

Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265D268 (2020).

Article CAS PubMed Google Scholar

Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200W204 (2018).

Article CAS PubMed PubMed Central Google Scholar

Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 11091123.e14 (2019).

Article CAS PubMed PubMed Central Google Scholar

Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 15751584 (2002).

Article CAS PubMed PubMed Central Google Scholar

Subelj, L. & Bajec, M. Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 83, 036103 (2011).

Article ADS MathSciNet PubMed Google Scholar

Bastian, M., Heymann, S., Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Third International ICWSM Conference, 361362 (2009).

Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 19721973 (2009).

Article CAS PubMed PubMed Central Google Scholar

Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254267 (2006).

Article CAS PubMed Google Scholar

DiCiccio, T. J. & Efron, B. Bootstrap confidence intervals (with Discussion). Stat. Sci. 11, 189228 (1996).

Article MATH Google Scholar

Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).

Article CAS PubMed PubMed Central Google Scholar

Spinks, P. Q., Thomson, R. C., McCartney-Melstad, E. & Shaffer, H. B. Phylogeny and temporal diversification of the New World pond turtles (Emydidae). Mol. Phylogenet Evol. 103, 8597 (2016).

Article PubMed Google Scholar

Visit link:

Genome mining shows that retroviruses are pervasively invading ... - Nature.com

Related Posts

Comments are closed.