A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based…

Lee, H. et al. Prevalence of vitiligo and associated comorbidities in Korea. Yonsei Med. J. 56, 719725 (2015).

PubMed PubMed Central Google Scholar

Zhang, Y. et al. The prevalence of vitiligo: A meta-analysis. PLoS One 11, 9 (2016).

CAS Google Scholar

Kim, S.-K., Kwon, H.-E., Jeong, K.-H., Shin, M. K. & Lee, M.-H. Association between exonic polymorphisms of human leukocyte antigen-G gene and non-segmental vitiligo in the Korean population. Indian J. Dermatol. Venereol. Leprol. 16. https://doi.org/10.25259/IJDVL_219_2021 (2022). Epub ahead of print.

Article PubMed Google Scholar

Luiten, R. M. et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J. Invest. Dermatol. 129, 22202232 (2009).

PubMed Google Scholar

Xuan, Y., Yang, Y., Xiang, L. & Zhang, C. The role of oxidative stress in the pathogenesis of vitiligo: A culprit for melanocyte death. Oxid. Med. Cell. Longev. 2022, 8498472. https://doi.org/10.1155/2022/8498472 (2022).

Article PubMed PubMed Central Google Scholar

Jain, A., Mal, J., Mehndiratta, V., Chander, R. & Patra, S. K. Study of oxidative stress in vitiligo. Indian J. Clin. Biochem. 26, 7881 (2011).

CAS PubMed Google Scholar

Katz, E. L. & Harris, J. E. Translational research in vitiligo. Front. Immunol. 12, 117 (2021).

Google Scholar

He, S., Xu, J. & Wu, J. The promising role of chemokines in vitiligo: From oxidative stress to the autoimmune response. Oxid. Med. Cell. Longev. 2022, 110 (2022).

CAS Google Scholar

Dong, J. et al. Interleukin-22 participates in the inflammatory process of vitiligo. Oncotarget 8, 109161109174 (2017).

PubMed PubMed Central Google Scholar

Chiarella, P. Vitiligo susceptibility at workplace and in daily life: The contribution of oxidative stress gene polymorphisms. Biomed. Dermatol. 3, 112 (2019).

Google Scholar

Gianfaldoni, S. et al. Vitiligo in children: A better understanding of the disease. Open Access Maced. J. Med. Sci. 6, 181184 (2018).

PubMed PubMed Central Google Scholar

Lu, T. et al. Vitiligo prevalence study in Shaanxi Province, China. Int. J. Dermatol. 46, 4751 (2007).

PubMed Google Scholar

Niu, C. & Aisa, H. A. Upregulation of melanogenesis and tyrosinase activity: Potential agents for vitiligo. Molecules 22, 8 (2017).

Google Scholar

Traks, T. et al. Polymorphisms in Toll-like receptor genes are associated with vitiligo. Front. Genet. 6, 278 (2015).

ADS PubMed PubMed Central Google Scholar

Huang, C. L., Nordlund, J. J. & Boissy, R. Vitiligo: A manifestation of apoptosis?. Am. J. Clin. Dermatol. 3, 301308 (2002).

CAS PubMed Google Scholar

Ruiz-Argelles, A., Brito, G. J., Reyes-Izquierdo, P., Prez-Romano, B. & Snchez-Sosa, S. Apoptosis of melanocytes in vitiligo results from antibody penetration. J. Autoimmun. 29, 281286 (2007).

PubMed Google Scholar

Saif, G. Bin & Khan, I. A. Association of genetic variants of the vitamin D receptor gene with vitiligo in a tertiary care center in a Saudi population: A case-control study. Ann. Saudi Med. 42, 96106 (2022).

PubMed PubMed Central Google Scholar

Becatti, M. et al. SIRT1 regulates MAPK pathways in vitiligo skin: Insight into the molecular pathways of cell survival. J. Cell. Mol. Med. 18, 514529 (2014).

CAS PubMed PubMed Central Google Scholar

Zhang, J. et al. Research Progress on Targeted Antioxidant Therapy and Vitiligo. Oxid. Med. Cell. Longev. 2022 (2022).

Amadi-myers, A. et al. Variant of. 112 (2010).

Tang, X. F. et al. Association analyses identify three susceptibility loci for vitiligo in the chinese han population. J. Invest. Dermatol. 133, 403410 (2013).

CAS PubMed Google Scholar

Jin, Y. et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat. Genet. 44, 676680 (2012).

CAS PubMed PubMed Central Google Scholar

Shajil, E. M., Chatterjee, S., Agrawal, D., Bagchi, T. & Begum, R. Vitiligo: Pathomechanisms and genetic polymorphism of susceptible genes. Indian J. Exp. Biol. 44, 526539 (2006).

CAS PubMed Google Scholar

Xu, M. et al. Genetic polymorphisms of GZMB and vitiligo: A genetic association study based on Chinese Han population. Sci. Rep. 8, 15 (2018).

ADS Google Scholar

ada, D. et al. Autoinflammation in addition to combined immunodeficiency: SLC29A3 gene defect. Mol. Immunol. 121, 2837 (2020).

PubMed Google Scholar

Wang, Y., Li, S. & Li, C. Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity. Med. Sci. Monit. 25, 10171023 (2019).

CAS PubMed PubMed Central Google Scholar

Kahn, A. M. Surgical treatment of vitiligo [2]. Dermatol. Surg. 25, 669 (1999).

CAS PubMed Google Scholar

Gebert, M., Jakiewicz, M., Moszyska, A., Collawn, J. F. & Bartoszewski, R. The effects of single nucleotide polymorphisms in cancer rnai therapies. Cancers (Basel) 12, 120 (2020).

Google Scholar

Cantn, I. et al. A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun. 6, 584587 (2005).

PubMed Google Scholar

Gavalas, N. G. et al. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem. Biophys. Res. Commun. 345, 15861591 (2006).

CAS PubMed Google Scholar

He, J. et al. Lack of association between the 389C>T polymorphism (rs769217) in the catalase (CAT) gene and the risk of vitiligo: An update by meta-analysis. Australas. J. Dermatol. 56, 180185 (2015).

PubMed Google Scholar

Quan, C. et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat. Genet. 42, 614618 (2010).

CAS PubMed Google Scholar

Ganguly, K. et al. Meta-analysis and prioritization of human skin pigmentation-associated GWAS-SNPs using ENCODE data-based web-tools. Arch. Dermatol. Res. 311, 163171 (2019).

PubMed Google Scholar

Giri, P. S., Begum, R. & Dwivedi, M. Meta-analysis for association of TNFA-308(G>A) SNP with vitiligo susceptibility. Gene 809, 146027 (2022).

CAS PubMed Google Scholar

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21, 11091121 (2011).

CAS PubMed PubMed Central Google Scholar

Shen, C. et al. Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front. Genet. 7, 112 (2016).

Google Scholar

Pyne, T. et al. Prioritization of human well-being spectrum related GWAS-SNVs using ENCODE-based web-tools predict interplay between PSMC3, ITIH4, and SERPINC1 genes in modulating well-being. J. Psychiatr. Res. 145, 92101 (2022).

Google Scholar

Rahman, M. H. et al. Bioinformatics methodologies to identify interactions between type 2 diabetes and neurological comorbidities. IEEE Access 7, 183948183970 (2019).

Google Scholar

Rahman, M. H. et al. A network-based bioinformatics approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of neurological diseases. Int. J. Environ. Res. Public Health 17, 125 (2020).

Google Scholar

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545D551 (2021).

CAS PubMed Google Scholar

Sanchez-Sosa, S., Aguirre-Lombardo, M., Jimenez-Brito, G. & Ruiz-Argelles, A. Immunophenotypic characterization of lymphoid cell infiltrates in vitiligo. Clin. Exp. Immunol. 173, 179183 (2013).

CAS PubMed PubMed Central Google Scholar

Deo, S., Bhagat, A. & Shah, R. Study of oxidative stress in peripheral blood of Indian vitiligo patients. Indian Dermatol. Online J. 4, 279 (2013).

PubMed PubMed Central Google Scholar

Wang, Q. et al. Stress-induced RNASET2 overexpression mediates melanocyte apoptosis via the TRAF2 pathway in vitro. Cell Death Dis. 5, e1022 (2014).

CAS PubMed PubMed Central Google Scholar

Wang, Q., Wang, X. & Xiang, L. Role and mechanism of RNASET2 in the pathogenesis of vitiligo. J. Investig. Dermatology Symp. Proc. 17, 4850 (2015).

Google Scholar

Caputa, G. et al. RNASET2 is required for ROS propagation during oxidative stress-mediated cell death. Cell Death Differ. 23, 347357 (2016).

CAS PubMed Google Scholar

Younus, H. Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International journal of health sciences, 12(3), 88.. Int. J. Health Sci. (Qassim). 12, 8893 (2018).

Dwivedi, M. et al. Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics. Autoimmun. Rev. 14, 4956 (2015).

CAS PubMed Google Scholar

Mohammed, G. F. Highlights in pathogenesis of vitiligo. World J. Clin. Cases 3, 221 (2015).

PubMed PubMed Central Google Scholar

Bagheri Hamidi, A. et al. Association of MTHFR C677T polymorphism with elevated homocysteine level and disease development in vitiligo. Int. J. Immunogenet. 47, 342350 (2020).

CAS PubMed Google Scholar

Marzabani, R. et al. Metabolomic signature of amino acids in plasma of patients with non-segmental Vitiligo. Metabolomics 17, 111 (2021).

Google Scholar

Diao, J. S. et al. Aberrant Notch signaling: A potential pathomechanism of vitiligo. Med. Hypotheses 73, 7072 (2009).

CAS PubMed Google Scholar

Shin, M. K. et al. Association between CDK5RAP1 polymorphisms and susceptibility to vitiligo in the korean population. Eur. J. Dermatology 22, 495499 (2012).

Visit link:

A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based...

Related Posts

Comments are closed.