Building next generation autonomous robots to serve humanity – CU Boulder’s College of Engineering & Applied Science

Featured on CBS Sunday Morning

Sean Humbert discusses the team's award-winning research developing autonomous robots that can navigate challenging conditions. The team demonstrated the robots for CBS during a recent visit to the Edgar Mine in Idaho Springs, CO.

Watch on CBS News

Since completion of the Subterranean Challenge, faculty and students have been conducting follow-on research and competitions with multiple corporate and government partners.

Research further advancing the capabilities of the Subterranean Challenge Robots is being led by numerous CU Boulder laboratories.

One thousand feet underground, a four-legged creature scavenges through tunnels in pitch darkness. With vision that cuts through the blackness, it explores a spider web of paths, remembering its every step and navigating with precision. The sound of its movements echo eerily off the walls, but it is not to be feared this is no wild animal; it is an autonomous rescue robot.

Initially designed to find survivors in collapsed mines, caves, and damaged buildings, that is only part of what it can do.

Created by a team of University of Colorado Boulder researchers and students, the robots placed third as the top US entry and earned $500,000 in prize money at a Defense Advanced Projects Research Agency Subterranean Challenge competition in 2021.

Two years later, they are pushing the technology even further, earning new research grants to expand the technology and create new applications in the rapidly growing world of autonomous systems.

Ideally you dont want to put humans in harms way in disaster situations like mines or buildings after earthquakes; the walls or ceilings could collapse and maybe some already have, said Sean Humbert, a professor of mechanical engineering and director of the Robotics Program at CU Boulder. These robots can be disposable while still providing situational awareness.

The team developed an advanced system of sensors and algorithms to allow the robots to function on their own once given an assignment, they make decisions autonomously on how to best complete it.

A major goal is to get them from engineers directly into the hands of first responders. Success requires simplifying the way the robots transmit data into something approximating plain English, according to Kyle Harlow, a computer science PhD student.

The robots communicate in pure math. We do a lot of work on top of that to interpret the data right now, but a firefighter doesnt have that kind of time, Harlow said.

To make that happen Humbert is collaborating with Chris Heckman, an associate professor of computer science, to change both how the robots communicate and how they represent the world. The robots eyes a LiDAR sensor creates highly detailed 3D maps of an environment, 15 cm at a time. Thats a problem when they try to relay information the sheer amount of data clogs up the network.

Humans dont interpret the environment in 15 cm blocks, Humbert said. Were now working on whats called semantic mapping, which is a way to combine contextual and spatial information. This is closer to how the human brain represents the world and is much less memory intensive.

The team is also integrating new sensors to make the robots more effective in challenging environments. The robots excel in clear conditions but struggle with visual obstacles like dust, fog, and snow. Harlow is leading an effort to incorporate millimeter wave radar to change that.

We have all these sensors that work well in the lab and in clean environments, but we need to be able to go out in places such as Colorado where it snows sometimes, Harlow said.

Where some researchers are forced to suspend work when a grant ends, members of the subterranean robotics team keep finding new partners to push the technology further.

Eric Frew, a professor of aerospace at CU Boulder, is using the technology for a new National Institute of Standards and Technology competition to develop aerial robots drones instead of ground robots, to autonomously map disaster areas indoors and outside.

Our entry is based directly on the Subterranean Challenge experience and the systems developed there, Frew said.

Some teams in the competition will be relying on drones navigated by human operators, but Frew said CU Boulders project is aiming for an autonomous solution that allows humans to focus on more critical tasks.

Although numerous universities and private businesses are advancing autonomous robotic systems, Humbert said other organizations often focus on individual aspects of the technology. The students and faculty at CU Boulder are working on all avenues of the systems and for uses in environments that present extreme challenges.

Weve built world-class platforms that incorporate mapping, localization, planning, coordination all the high level stuff, the autonomy, thats all us, Humbert said. There are only a handful of teams across the world that can do that. Its a huge advantage that CU Boulder has.

Originally posted here:

Building next generation autonomous robots to serve humanity - CU Boulder's College of Engineering & Applied Science

Related Posts

Comments are closed.