With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel … – Nature.com

Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115(44), 1126211267 (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

De Len, L. F., Silva, B., Avils-Rodrguez, K. J. & Buitrago-Rosas, D. Harnessing the omics revolution to address the global biodiversity crisis. Curr. Opin. Biotechnol. 80, 102901 (2023).

Article PubMed Google Scholar

Steiner, M., & Huettmann, F. Sustainable Squirrel Conservation: A Modern Re-Assessment of Family Sciuridae. (Springer Nature: Cham, Switzerland 2023).

Burgin, C. J. et al. Illustrated Checklist of the Mammals of the World (Lynx Ediciones, 2020).

Google Scholar

Thorington Jr, R. W., Koprowski, J. L., Steele, M. A., & Whatton, J. F. Squirrels of the world. (JHU Press 2012).

Koprowski, J. L., & Nandini, R. Global hotspots and knowledge gaps for tree and flying squirrels. Curr. Sci. 851856 (2008).

Regmi, G. R., & Huettmann, F. (Eds.). Hindu Kush-Himalaya watersheds downhill: Landscape ecology and conservation perspectives. (Springer International Publishing 2020).

Humphries, G., Magness, D.R., & Huettmann, F. Machine Learning for Ecology and Sustainable Natural Resource Management (Springer, Switzerland 2018).

Fernndez-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we need hundreds of classifiers to solve real world classification problems?. J. Mach. Learn. Res. 15(1), 31333181 (2014).

MathSciNet Google Scholar

Suber, P. Open access (p. 1256). (The MIT Press, Cambridge 2012).

Sriram, S., & Huettmann, F. A Global model of predicted peregrine falcon (Falco peregrinus) distribution with open source GIS code and 104 open access layers for use by the global public. Earth Syst. Sci. Data Disc. 139 (unpublished).

Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).

Article ADS CAS PubMed Google Scholar

Hardy, S. M., Lindgren, M., Konakanchi, H., & Huettmann, F. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: A first open-access ensemble model. 608622 (2011).

Huettmann, F. Advanced Data Mining (Cloning) of Predicted Climate-Scapes and Their Variances Assessed with Machine Learning: An Example from Southern Alaska Shows Topographical Biases and Strong Differences. Mach. Learn. Ecol. Sustain. Nat. Res. Manag. 227241 (2018).

Meiner, K. et al. Distribution of benthic marine invertebrates at northern latitudes-An evaluation applying multi-algorithm species distribution models. J. Sea Res. 85, 241254 (2014).

Article ADS Google Scholar

Elith, J. et al. Presence-only and presence-absence data for comparing species distribution modeling methods. Biodivers. Inf. 15(2), 6980 (2020).

Google Scholar

Phillips, S. J. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19(1), 181197 (2009).

Article PubMed Google Scholar

Hart-Davis, G. Creating and Using Excel Database Tables. In Beginning Microsoft Office 2010 (pp. 393411). (Berkeley, CA: Apress 2010).

Grillo, M., Huettmann, F., Guglielmo, L. & Schiaparelli, S. Three-dimensional quantification of copepods predictive distributions in the Ross Sea: First data based on a machine learning model approach and open access (FAIR) data. Diversity 14(5), 355 (2022).

Article Google Scholar

Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5, e2849 (2017).

Article PubMed PubMed Central Google Scholar

Hijmans, R. J., & van Etten, J. raster: Geographic data analysis and modeling. R package version, 2(8) (2016).

Hijmans, R. J., & Elith, J. Species distribution modeling with R. R Cran Project (2013).

Bivand, R. et al. Package rgeos. The Comprehensive R Archive Network (CRAN) (2017).

Pebesma, E., Bivand, R., Pebesma, M. E., RColorBrewer, S., & Collate, A. A. A. Package sp. The Comprehensive R Archive Network (2012).

Urbanek, S. rJava: Low-level R to Java interface. http://www.rforge.net/rJava/ (2013).

Joseph, V. R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 15(4), 531538 (2022).

Article MathSciNet Google Scholar

Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199231 (2001).

Article Google Scholar

Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 6978 (2021).

Article Google Scholar

Luckett, W.P., & Hartenberger, J.L. Evolutionary relationships among rodents: comments and conclusions. In Evolutionary relationships among rodents (pp. 685712). Springer, Boston, MA (1985).

Nelson, D. D. et al. Francisella tularensis infection without lesions in gray tree squirrels (Sciurus griseus): A diagnostic challenge. J. Vet. Diagn. Invest. 26(2), 312315 (2014).

Article PubMed Google Scholar

Pearson, D. E. & Ruggiero, L. F. Test of the prey-base hypothesis to explain use of red squirrel midden sites by American martens. Can. J. Zool. 79(8), 13721379 (2001).

Article Google Scholar

Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl. Acad. Sci. 118(2), e1922859118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Stein, B. A. States of the union: Ranking America's biodiversity. (NatureServe 2002).

Cervellini, M. et al. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 11(24), 1811118124 (2021).

Article PubMed PubMed Central Google Scholar

Bookbinder, M. P., & Ledec, G. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Wildlife Fund and World Bank, Washington, DCFAO (2003) FAOs global estimate of mangroves. http://www.fao.org (1995).

Huettmann, F. (Ed.). Central American biodiversity: conservation, ecology, and a sustainable future (Springer 2015).

Morales-Marroqun, J. A., Solis Miranda, R., Baldin Pinheiro, J. & Zucchi, M. I. Biodiversity research in Central America: A regional comparison in scientific production using bibliometrics and democracy indicators. Front. Res. Metrics Anal. 7, 44 (2022).

Google Scholar

Reid, F. A field guide to mammals of North America, north of Mexico (Vol. 4). (Houghton Mifflin Harcourt 2006).

Aulagnier, S. Atlantoxerus getulus (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T2358A115518165. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T2358A22251981.en. Accessed on 03 February 2023.

Jacobson, A. P., Riggio, J., M Tait, A., & EM Baillie, J. Global areas of low human impact (Low Impact Areas) and fragmentation of the natural world. Sci. Rep. 9(1), 113 (2019).

Bizhanova, N. et al. The Elusive Turkestan Lynx at the Northwestern edge of geographic range: Current suitable habitats and distribution forecast in the climate change. Sustainability 14(15), 9491 (2022).

Article Google Scholar

Proche, ., Ramdhani, S., Hughes, A. C., & Koh, L. P. Southeast Asia as one of worlds primary sources of biotic recolonization following anthropocene extinctions. Front. Ecol. Evol. 116.

Sodhi, N. S., & Brook, B. W. Southeast Asian biodiversity in crisis. (Cambridge University Press 2006).

Sodhi, N. S., Brook, B. W., & Bradshaw, C. J. Tropical conservation biology. (John Wiley & Sons 2013).

Sodhi, N. S. et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143(10), 23752384 (2010).

Article Google Scholar

Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: An impending disaster. Trends Ecol. Evol. 19(12), 654660 (2004).

Article PubMed Google Scholar

Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asias biotas. Biotropica 41(1), 103109 (2009).

Article Google Scholar

Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317328. https://peerj.com/articles/11830/ (2010).

Awodoyin, R. O. et al. Indigenous fruit trees of tropical Africa: Status, opportunity for development and biodiversity management. Agric. Sci. 6(01), 31 (2015).

Google Scholar

Couvreur, T. L. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96(1), 1651 (2021).

Article PubMed Google Scholar

Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots: distribution and protection of conservation priority areas, 322 (2011).

Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13(7), 275280 (1998).

Article CAS PubMed Google Scholar

Abreu-Jr, E. F. D. et al. Spatiotemporal diversification of tree squirrels: Is the South American invasion and speciation really that recent and fast?. Front. Ecol. Evol. 8, 230 (2020).

Article Google Scholar

Hafner, M. S., Barkley, L. J. & Chupasko, J. M. Evolutionary genetics of New World tree squirrels (tribe Sciurini). J. Mammal. 75(1), 102109 (1994).

Article Google Scholar

Penerov, P. & Martnkov, N. Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction. Zool. Script. 41(3), 211219 (2012).

Article Google Scholar

Hainsworth, F. R. Optimal body temperatures with shuttling: Desert antelope ground squirrels. Anim. Behav. 49(1), 107116 (1995).

Article Google Scholar

Bacon, C. D. et al. Geographic and taxonomic disparities in species diversity: Dispersal and diversification rates across Wallaces line. Evolution 67(7), 20582071 (2013).

Article PubMed Google Scholar

Van Oosterzee, P. Where worlds collide: the Wallace Line. (Cornell University Press 1997).

White, A. E., Dey, K. K., Stephens, M. & Price, T. D. Dispersal syndromes drive the formation of biogeographical regions, illustrated by the case of Wallaces Line. Glob. Ecol. Biogeogr. 30(3), 685696 (2021).

Article PubMed PubMed Central Google Scholar

Zurell, D., Fritz, S. A., Rnnfeldt, A., & Steinbauer, M. J. Predicting extinctions with species distribution models. Cambridge Prisms: Extinction 129 (2023).

Dasari, S., & Kaluri, R. Big data analytics, processing models, taxonomy of tools, Vs, and challenges: State-of-art review and future implications. Wirel. Commun. Mob. Comput. (2023).

Gulyaeva, M., Huettmann, F., Shestopalov, A., Okamatsu, M., Matsuno, K., Chu, D. H., & Bortz, E. Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (AI) in the wider pacific rim using big data sets. Sci. Rep. 10(1), 16817.

Zabihi, K., Huettmann, F., & Young, B. Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: First use of open access big data mining and open source GIS to provide robust inference and a role model for progress in forest conservation. Biodivers. Inf. 16(1), 119.

Huettmann, F. Investigating Matschie's Tree Kangaroos With ModernMethods: Digital Workflows, Big Data Project Infrastructure, and Mandated Approaches for a Holistic Conservation Governance. In Tree Kangaroos (pp. 379391) (Academic Press 2021).

Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129151 (2006).

Article ADS Google Scholar

Robold, R. B. & Huettmann, F. High-resolution prediction of American red squirrel in Interior Alaska: A role model for conservation using open access data, machine learning GIS and LIDAR. PeerJ 9, e11830 (2021).

Article PubMed PubMed Central Google Scholar

Zhang, X., Wen, S., Yan, L., Feng, J., & Xia, Y. A hybrid-convolution spatialtemporal recurrent network for traffic flow prediction. Comput. J. bxac171 (2022).

See the article here:
With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel ... - Nature.com

Related Posts

Comments are closed.