Category Archives: Quantum Computer

BBVA runs successful trial of distributed quantum simulation in the cloud – Finextra

BBVA has completed a successful trial of the execution of quantum algorithms across multiple conventional servers in the AWS cloud.

Javier Recuenco Andrs, head of the Technical Architecture Innovation area at BBVA CIB in charge of the pilot project, says of the project: With these trials, we have shown that at BBVA we can have a proprietary architecture for executing quantum algorithms, which would help further our exploration of their use in complex financial tasks.

To run its test, BBVA worked with the Quantum Computing team of the digital transformation company VASS and AWS, using Qiskit software to distribute the execution of quantum algorithms across multiple classical compute servers located in the AWS cloud, and created a platform to automate and streamline the distribution process.

During the tests, BBVA was able to run quantum algorithms scaling up to a total computing power of 38 qubits, a scale that is difficult to reach with the use of a single classical computer. The higher the number of qubits, the more complex the problems the system can tackle.

Alongside its own inhouse trials, BBVA is also a founding member of the Quantum Safe Financial Forum (QSFF), a safe space for collaboration between European and US financial firms promoted by Europols European Cybercrime Centre (EC3). The alliance aims to foster the creation of new technological systems within the financial industry that are safe, secure and resilient to malicious attacks that rely on quantum computing.

At BBVA we explore the potential of quantum computing for two main reasons: to try to find better solutions to business problems and to strengthen the security of our communications and data to counteract the malicious use of quantum computing by third parties, explains Escolstico Snchez, leader of the Quantum discipline at BBVA. The distributed quantum simulation pilot we have successfully completed is a further step in this exploration, which could enable different business units of the bank to leverage this technology.

Read more:
BBVA runs successful trial of distributed quantum simulation in the cloud - Finextra

BBVA runs successful trial of distributed quantum simulation in the cloud – BBVA

To run its test, BBVA worked with the Quantum Computing team of the digital transformation company VASS and AWS, using Qiskit software to distribute the execution of quantum algorithms across multiple classical compute servers located in the AWS cloud, and created a platform to automate and streamline the distribution process.

With this distributed quantum simulation, one of the first of its kind in the financial sector, BBVA was able to run quantum algorithms scaling up to a total computing power of 38 qubits, a scale that is difficult to reach with the use of a single classical computer. The higher the number of qubits, the more complex the problems the system can tackle.

BBVA is a founding member of the Quantum Safe Financial Forum (QSFF), a safe space for collaboration between European and US financial firms promoted by Europols European Cybercrime Centre (EC3). The alliance aims to foster the creation of new technological systems within the financial industry that are safe, secure and resilient to malicious attacks that rely on quantum computing.

The trial also served to demonstrate that classical computers can be used to test quantum algorithms at scale and in an ideal computing environment. Quantum computing is an emerging technology and todays hardware is highly susceptible to noise. Running large-scale simulations allows BBVA to explore potential applications in a noise-free environment, with the potential to bring these applications to larger, more fault-tolerant quantum hardware as it matures.

The results were exactly what we expect to obtain in a fault-tolerant quantum computer, said Javier Recuenco Andrs, head of the Technical Architecture Innovation area at BBVA CIB in charge of the pilot project. With these trials, we have shown that at BBVA we can have a proprietary architecture for executing quantum algorithms, which would help further our exploration of their use in complex financial tasks.

At BBVA we explore the potential of quantum computing for two main reasons: to try to find better solutions to business problems and to strengthen the security of our communications and data to counteract the malicious use of quantum computing by third parties, explained Escolstico Snchez, leader of the Quantum discipline at BBVA. The distributed quantum simulation pilot we have successfully completed is a further step in this exploration, which could enable different business units of the bank to leverage this technology.

Original post:
BBVA runs successful trial of distributed quantum simulation in the cloud - BBVA

Unveiling the Potential of Hole Spin Qubits in Quantum Computing – AZoQuantum

Scientists from the University of Basel and the NCCR SPIN have achieved the first controllable interaction between two-hole spin qubits in a typical silicon transistor. The discovery makes it possible to use established manufacturing techniques to combine millions of these qubits on a single chip. The research was published in the journal Nature Physics.

The race to build a practical quantum computer is well underway, with researchers around the world working on a huge variety of qubit technologies. Up until now, there has been no consensus on what type of qubit is most suitable for maximizing the potential of quantum information science.

A quantum computer's qubits, which manage data processing, transport, and storage, are its fundamental components. They need to process information quickly and store it accurately to function properly. Stable and quick interactions among several qubits whose states are reliably controllable externally constitute the foundation for fast information processing.

Millions of qubits need to fit on a single chip for a quantum computer to be useful. With only a few hundred qubits, the most sophisticated quantum computers available today are limited to performing tasks that can already be completed (and frequently done more quickly) by conventional computers.

Researchers at the University of Basel and the NCCR SPIN are addressing the challenge of arranging and linking thousands of qubits by utilizing a type of qubit that exploits the spin (intrinsic angular momentum) of either an electron or a hole.

A hole is essentially a missing electron in a semiconductor. Both holes and electrons possess spin, which can adopt one of two states: up or down, analogous to 0 and 1 in classical bits. An advantage of a hole spin over an electron spin is that it can be controlled entirely through electrical means, eliminating the need for additional components such as micromagnets on the chip.

As early as 2022, physicists from Basel demonstrated that hole spins could be trapped and utilized as qubits in existing electronic devices. These devices, known as "FinFETs" (fin field-effect transistors), are integral components of modern smartphones and are manufactured through widespread industrial processes.

Recently, a team led by Dr. Andreas Kuhlmann achieved a breakthrough by successfully facilitating a controllable interaction between two qubits within this setup for the first time.

Quantum computers require "quantum gates" to perform calculations; these gates are operations that manipulate qubits and link them together. As detailed in the journal Nature Physics, researchers have successfully coupled two qubits and achieved a controlled flip of one qubit's spin based on the state of the other's spin, a process referred to as a controlled spin-flip.

Hole spins allow us to create two-qubit gates that are both fast and high-fidelity. This principle now also makes it possible to couple a larger number of qubit pairs.

Dr. Andreas Kuhlmann, Department of Physics, University of Basel

The exchange interaction between two indistinguishable particles that interact electrostatically provides the basis for the coupling of two spin qubits.

Surprisingly, the exchange energy of holes is not only electrically controllable but strongly anisotropic. This is due to thespin-orbit coupling, meaningthat the spin state of a hole is influenced by its motion through space.

Experimental and theoretical physicists from the NCCR SPIN and the University of Basel joined forces to describe this observation in a model.

The anisotropy makes two-qubit gates possible without the usual trade-off between speed and fidelity, Qubits based on hole spins not only leverage the tried-and-tested fabrication of silicon chips, they are also highly scalable and have proven to be fast and robust in experiments.

Dr. Andreas Kuhlmann, Department of Physics, University of Basel

The study emphasizes how promising this strategy is to create a large-scale quantum computer.

Geyer, S., et al. (2024) Anisotropic exchange interaction of two hole-spin qubits. Nature Physics. doi.org/10.1038/s41567-024-02481-5.

Source: https://www.unibas.ch/en.htm

Here is the original post:
Unveiling the Potential of Hole Spin Qubits in Quantum Computing - AZoQuantum

Trolling IBM’s Quantum Processor Advantage With A Commodore 64 – Hackaday

The memory map of the implementation, as set within the address space of the Commodore 64 about 15kB of the accessible 64kB RAM is used.

Theres been a lot of fuss about the quantum advantage that would arise from the use of quantum processors and quantum systems in general. Yet in this high-noise, high-uncertainty era of quantum computing it seems fair to say that the advantage part is a bit of a stretch. Most recently an anonymous paper (PDF, starts at page 199) takes IBMs claims with its 127-bit Eagle quantum processor to its ludicrous conclusion by running the same Trotterized Ising model on the ~1 MHz MOS 6510 processor in a Commodore 64. (Worth noting: this paper was submitted to Sigbovik, the conference of the Association for Computational Heresy.)

We previously covered the same claims by IBM already getting walloped by another group of researchers (Tindall et al., 2024) using a tensor network on a classical computer. The anonymous submitter of the Sigbovik paper based their experiment on a January 2024 research paper by [Tomislav Begui] and colleagues as published in Science Advances. These researchers also used a classical tensor network to run the IBM experiment many times faster and more accurately, which the anonymous researcher(s) took as the basis for a version that runs on the C64 in a mere 15 kB of RAM, with the code put on an Atmel AT28C256 ROM inside a cartridge which the C64 then ran from.

The same sparse Pauli dynamics algorithm was used as by [Tomislav Begui] et al., with some limitations due to the limited amount of RAM, implementing it in 6502 assembly. Although the C64 is ~300,000x slower per datapoint than a modern laptop, it does this much more efficiently than the quantum processor, and without the high error rate. Yes, that means that a compute cluster of Commodore 64s can likely outperform a please call us for a quote quantum system depending on which linear algebra problem youre trying to solve. Quantum computers may yet have their application, but this isnt it, yet.

Thanks to [Stephen Walters] and [Pio] for the tip.

See the article here:
Trolling IBM's Quantum Processor Advantage With A Commodore 64 - Hackaday

French quantum computing powerhouses Pasqal and Welinq announce partnership – Tech.eu

Today, two French quantum computing companies,PasqalandWelinq, announced a partnershipsetto bring new standards to thequantum computingindustry.

Pasqal builds quantum processors from ordered neutral atoms in 2D and 3D arrays to give its customers a practical quantum advantage and address real-world problems. It was founded in 2019 out of the Institut d'Optique by Georges-Olivier Reymond, Christophe Jurczak, Professor Dr Alain AspectNobel Prize Laureate Physics, 2022, Dr Antoine Browaeys, and Dr Thierry Lahaye. To date, Pasqal has secured more than 140 million in financing.

Welinq develops and commercialises quantum links based on laser-cooled neutral atom quantum memories to interconnect quantum computers, drastically increasing their computational power and ensuring their deployment in clusters on customer premises.

The company spun out from Sorbonne Universit, CNRS and PSL-University and was founded in 2022 by Tom Darras, Prof Julien Laurat, Dr Eleni Diamanti and Jean Lautier-Gaud.

The next-generation Quantum Processing Units (QPUs)are expectedto execute quantum algorithms relying on a large number of qubits while applying error correction, which would necessitate an even more significant number.

Welinq harnesses a unique solution to interconnect multiple QPUs, significantly enhancing computational power. This facilitates scaling up the number of qubits and optimised QPU deployment and establishes the foundation for expansive quantum networks.Welinq's world-leading quantum memories are central to this breakthrough,whichare essential in creating these pivotal quantum links.

The two companies aim to push the boundaries of quantum processing unit (QPU) interconnectivity. Welinq brings their full-stack, turnkey quantum links to the partnership and the world's most efficient quantum memories based on cold neutral atoms, promising to provide the scalability necessary for achieving fault-tolerant quantum computing.

Pasqal offers expertise in quantum computing with neutral atoms, featuring full-stack capabilities from hardware design and development to software solutions.

By the end of 2024, Welinq targets an industrial prototype of their neutral atom quantum memory with cutting-edge efficiency, storage time, and fidelity. Pasqal aims for a breakthrough in 2024 with 1000-qubit QPUs. T

he roadmap peaks in the 2026-2027 horizon with projected 10,000-qubit QPUs and high-fidelity two-qubit gates.

By 2030, they aim to foster a thriving quantum computing ecosystem, driving significant scientific and commercial advancements.

Multiple Pasqal neutral atom quantum processors will be interconnected for the first time, significantly boosting computing power. This represents a substantial step toward developing a complete, fault-tolerant quantum computing architecture that supports distributed computing.

Georges-Olivier Reymond, CEO and co-founder Pasqal commented:

"The partnership between Pasqal and Welinq is a strategic step towards practical quantum computing.

Our collaboration is centred on creating tangible solutions by integrating Pasqal's precision in quantum processing with Welinq's innovative networking and quantum memory systems.

This is quantum advancement with real-world application in mind, striving to solve complex problems with greater efficiency and reliability."

According to Tom Darras, CEO & Co-founder of Welinq:

"I am delighted to see that Welinq's unique vision for the scale-up of quantum computing is in alignment with quantum computing leaders like Pasqal,

This is a landmark for boosting the global quantum community towards achieving practical quantum computing in networked quantum computer architectures."

Lead image: Dynamic Wang.

See the rest here:
French quantum computing powerhouses Pasqal and Welinq announce partnership - Tech.eu

Quantum Computing Could be the Next Revolution – Fair Observer

Every few decades, the world witnesses technological revolutions that profoundly change our lives. This happened when we first invented computers, when we created the Internet and most recently when artificial intelligence (AI) emerged.

Today, experts frequently speculate that the next revolution will involve technologies grounded in the principles of quantum mechanics. One such technology is quantum computing. Harnessing the unique properties of quantum mechanics, quantum computers promise to achieve superior computational power, solving certain tasks that are beyond the reach of classical computers.

Quantum computers can potentially transform many sectors, from defense and finance to education, logistics and medicine. However, we are currently in a quantum age reminiscent of the pre-silicon era of classical computers. Back then, state-of-the-art computers like ENIAC ran on vacuum tubes, which were large, clunky, and required a lot of power. During the 1950s, experts investigated various platforms to develop the most efficient and effective computing systems. This journey eventually led to the widespread adoption of silicon semiconductors, which we still use today.

Similarly, todays quantum quest involves evaluating different potential platforms to produce what the industry commonly calls a fault-tolerant quantum computer quantum computers that are able to perform reliable operations despite the presence of errors in their hardware.

Tech giants, including Google and IBM, are adapting superconductors materials that have zero resistance to electrical current to build their quantum computers, claiming that they might be able to build a reasonably large quantum computer by 2030. Other companies and startups dedicated to quantum computing, such as QuEra, PsiQuantum and Alice & Bob, are experimenting with other platforms and even occasionally declaring that they might be able to build one before 2030.

Until the so-called fault-tolerant quantum computer is built, the industry needs to go through an era commonly referred to as the Noisy Intermedia-Scale Quantum (NISQ) era. NISQ quantum devices contain a few hundred quantum bits (qubits) and are typically prone to errors due to various quantum phenomena.

NISQ devices serve as early prototypes of fault-tolerant quantum computers and showcase their potential. However, they are not expected to clearly demonstrate practical advantages, such as solving large scale optimization problems or simulating sufficiently complex chemical molecules.

Researchers attribute the difficulty of building such devices to the significant amount of errors (or noise) NISQ devices suffer from. Nevertheless, this is not surprising. The basic computational units of quantum computers, the qubits, are highly sensitive quantum particles easily influenced by their environment. This is why one way to build a quantum computer is to cool these machines to near zero kelvin a temperature colder than outer space. This reduces the interaction between qubits and the surrounding environment, thus producing less noise.

Another approach is to accept that such levels of noise are inevitable and instead focus on mitigating, suppressing or correcting any errors produced by such noise. This constitutes a substantial area of research that must advance significantly if we are to facilitate the construction of fault-tolerant quantum computers.

As the construction of quantum devices progresses, research advances rapidly to explore potential applications, not just for future fault-tolerant computers, but also possibly for todays NISQ devices. Recent advances show promising results in specialized applications, such as optimization, artificial intelligence and simulation.

Many speculate that the first practical quantum computer may appear in the field of optimization. Theoretical demonstrations have shown that quantum computers will be capable of solving optimization problems more efficiently than classical computers. Performing optimization tasks efficiently could have a profound impact on a broad range of problems. This is especially the case where the search for an optimized solution would usually require an astronomical number of trials.

Examples of such optimization problems are almost countless and can be found in major sectors such as finance (portfolio optimization and credit risk analysis), logistics (route optimization and supply chain optimization) and aviation (flight gate optimization and flight path optimization).

AI is another field in which experts anticipate quantum computers will make significant advances. By leveraging quantum phenomena, such as superposition, entanglement and interference which have no counterparts in classical computing quantum computers may offer advantages in training and optimizing machine learning models.

However, we still do not have concrete evidence supporting such claimed advantages as this would necessitate larger quantum devices, which we do not have today. That said, early indications of these potential advantages are rapidly emerging within the research community.

Simulating quantum systems was the original application that motivated the idea of building quantum computers. Efficient simulations will likely drastically impact many essential applications, such as material science (finding new material with superior properties, like for better batteries) and drug discovery (development of new drugs by more accurately simulating quantum interactions between molecules).

Unfortunately, with the current NISQ devices, only simple molecules can be simulated. More complex molecules will need to wait for the advent of large fault-tolerant computers.

There is uncertainty surrounding the timeline and applications of quantum computers, but we should remember that the killer application for classical computers was not even remotely envisioned by their inventors. A killer application is the single application that contributed the most to the widespread use of a certain technology. For classical computers, the killer application, surprisingly, turned out to be spreadsheets.

For quantum computers, speculation often centers around simulation and optimization being the potential killer applications of this technology, but a definite winner is still far from certain. In fact, the quantum killer application may be something entirely unknown to us at this time and it may even arise from completely uncharted territories.

[Will Sherriff edited this piece.]

The views expressed in this article are the authors own and do not necessarily reflect Fair Observers editorial policy.

Read the rest here:
Quantum Computing Could be the Next Revolution - Fair Observer

Exploring the Power of Quantum AI: What You Need to Know – Scioto Valley Guardian

Quantum AI is a fascinating field that combines the power of quantum computing with artificial intelligence to unlock new possibilities and revolutionize industries. In this article, we will delve into the basics of quantum computing, explore the next frontier of quantum AI algorithms, examine cutting-edge applications across various industries, discuss the challenges and opportunities that come with this technology, and speculate on the future of quantum AI. Whether youre a seasoned tech enthusiast or simply intrigued by the potential of groundbreaking innovations, the emergence of platforms likequantumai.counderscores the growing importance and accessibility of quantum AI in shaping the technological landscape of tomorrow.

The field of quantum computing represents a fundamental change in computational approach, moving away from classical computings binary logic and towards the probabilistic domain of quantum mechanics. Fundamentally, quantum computing uses quantum bits, or qubits, to alter data by utilizing the laws of superposition and entanglement. Qubits are different from classical bits in that they can exist in more than one state at once. This allows for the processing of information in parallel and exponentially increases computer capacity. Shors algorithm for integer factorization and Grovers algorithm for database search are two examples of these algorithms that highlight the revolutionary potential of quantum computing in resolving intricate issues that are beyond the scope of classical systems.

The cutting edge of computational innovation is embodied in AI algorithms, which combine the intelligence of artificial neural networks with the capabilities of quantum computing. Equipped with the concepts of quantum parallelism and superposition, these algorithms go beyond the limitations of traditional machine learning models by enabling quick data processing and improved optimization methods. The field of these artificial intelligence (AI) algorithms is expanding at an unprecedented rate, with ground-breaking developments ranging from quantum-inspired optimization algorithms such as the Quantum Approximate Optimisation Algorithm (QAOA) to quantum neural networks for pattern recognition and classification. These algorithms present unmatched prospects for propelling scientific research and expanding technological boundaries.

Quantum AI has the potential to revolutionize a wide range of sectors by spurring creativity and altering long-standing paradigms. By utilizing these optimization algorithms to negotiate complicated market dynamics and open up new paths for profit maximization, quantum AI in finance empowers algorithmic trading tactics, risk management protocols and portfolio optimization procedures. Quantum AI in healthcare heralds a new era of precision medicine and tailored medicines by streamlining drug discovery pipelines, facilitating genome sequencing and analysis, and enabling personalized treatment regimens. This AI also improves inventory management systems, expedites route optimization, and boosts demand forecasting skills in logistics and supply chain management, all of which maximize operational effectiveness and resource utilization.

Although quantum AI has countless potential, there are manydifficulties and barriersin the way of its actualization. One of the biggest obstacles in the way of effective computing is still the search for fault-tolerant quantum hardware that can maintain stable qubits and reduce quantum decoherence. In addition, interdisciplinary cooperation and coordinated research efforts are required for the development of scalable quantum algorithms and error correction codes to overcome current obstacles and realize the full potential of quantum AI. However, these difficulties also present previously unheard-of chances for creativity, teamwork, and societal effect, highlighting the revolutionary potential of quantum AI in reshaping both technology and humankind.

Quantum AI is expected to evolve through a trajectory of rapid innovation, revolutionary breakthroughs, and paradigm shifts in computational approaches as we move towards a future driven by quantum energy. From ground-breaking studies in quantum information theory to industrial applications in quantum computing and artificial intelligence, the field of quantum AI is changing at a rate never seen before, changing entire industries, transforming scientific research, and advancing humankind to new heights of comprehension. The potential of quantum AI to surpass imagination and usher in an unprecedented era of technical growth and societal upheaval is contingent upon sustained investment, collaboration, and inventiveness.

To sum up, quantum AI is a cutting-edge technical advancement that embodies a stunning combination of artificial intelligence and quantum computing, with the potential to redefine human achievement. By exploring the complexities of artificial intelligence with quantum mechanics, we can open up new possibilities outside the scope of traditional computing paradigms. We set out on a voyage of exploration and invention as we negotiate the difficulties of quantum AI, driven by the unquenchable quest for knowledge and advancement.

The field of quantum AI is constantly growing, offering numerous chances for groundbreaking discoveries, cross-disciplinary cooperation and societal influence. Quantum AI is a progress accelerator that will lead us to a future filled with limitless potential and unimaginable possibilities, revolutionizing everything from industries to scientific frontiers to solving urgent global concerns. As we approach the dawn of a quantum-powered era, let us seize the opportunity presented by quantum AI and use its revolutionary potential to create a better, more promising future for coming generations.

View original post here:
Exploring the Power of Quantum AI: What You Need to Know - Scioto Valley Guardian

‘Almost very close’ to nuclear weapon: Federal cyber officials brace for quantum computing surprise – Washington Times

Federal cybersecurity officials are preparing for a quantum computing surprise that requires the largest change in encryption ever to safeguard Americans data from foreign hackers.

The Cybersecurity and Infrastructure Security Agencys Garfield Jones said Tuesday that the emergence of a cryptanalytically relevant quantum computer will upend digital security in unprecedented ways and that people need to prepare immediately.

Such a device, dubbed CRQC, would be capable of breaking encryption to expose government secrets and peoples personal information to anyone who uses the machine, according to cyber officials.

Nations will rush to develop the tech and keep it hidden from public view in order to steal their enemies data while upending information security in the process, according to Mr. Jones, CISA associate chief of strategic technology.

When it drops, its not going to be, I dont think its going to be a slow drop, Mr. Jones told cyber officials assembled at the U.S. General Services Administration. I think once someone gets this CRQC, none of us will know.

Quantum computers promise speeds and efficiency that todays fastest supercomputers cannot match, according to the National Science Foundation. Classical computers have more commercial value now because quantum computers have not yet proven capable of correcting errors involving encoded data.

A cryptanalytically relevant quantum computer, the CRQC, will be capable of correcting errors, according to Mr. Jones, and perform tasks that other computers cannot approach.

Preparations for defense against such technology are underway across the federal government.

Art Fuller, who is leading the Justice Departments post-quantum cryptography efforts, said developing secure systems presents a huge challenge that cannot be solved by flipping a switch.

This is the largest cryptographic migration in history, Mr. Fuller told officials at Tuesdays event.

Estimates on the timing of the creation of such a quantum computer vary, but Mr. Jones said large-scale quantum computers remain in the early stages of research and development and could still be a ways off.

Regardless, Mr. Jones cautioned digital defenders against delaying preparation for the arrival of such technology.

He described the environment surrounding the development of the CRQC as almost very close to a nuclear weapon, with nations competing to obtain the machine and keep it top secret.

You never know, three years from now, you might have a CRQC but I think planning and getting that preparation in place will help you protect that data, Mr. Jones said.

The National Security Agency similarly fears the arrival of a CRQC in the hands of Americas enemies.

NSA Director of Research Gil Herrera said last month that teams around the world are building with different technologies and could develop something representing a black swan event, an extremely unexpected occurrence with harsh consequences.

If this black swan event happens, then were really screwed, Mr. Herrera said, citing potential damage to everything from financial transactions to sensitive communications for nuclear weapons.

Mr. Herrera did not forecast precisely when a nation could develop such a device in remarks at the Intelligence and National Security Alliance event but indicated it may take a long time to achieve.

View original post here:
'Almost very close' to nuclear weapon: Federal cyber officials brace for quantum computing surprise - Washington Times

Future quantum computers will be no match for ‘space encryption’ that uses light to beam data around with the 1st … – Space.com

By converting data into light particles and beaming them around the world using satellites, we could prevent encrypted messages from being intercepted by a superpowerful quantum computer, scientists claim.

Currently, messaging technology relies on mathematical, or cryptographic, methods of protection, including end-to-end encryption. This technology is used in WhatsApp as well as by corporations, the government and the military to protect sensitive data from being intercepted.

Encryption works by scrambling data or text into what appears to be nonsense, using an algorithm and a key that only the sender and recipient can use to unlock the data. These algorithms can, in theory, be cracked. But they are designed to be so complex that even the fastest supercomputers would take millions of years to translate the data into something readable.

Related: World's 1st fault-tolerant quantum computer launching this year ahead of a 10,000-qubit machine in 2026

Quantum computers change the equation. Although the field is young, scientists predict that such machines will be powerful enough to easily break encryption algorithms someday. This is because they can process exponentially greater calculations in parallel (depending on how many qubits they use), whereas classical computers can process calculations only in sequence.

Fearing that quantum computers will render encryption obsolete someday, scientists are proposing new technologies to protect sensitive communications. One field, known as "quantum cryptography," involves building systems that can protect data from encryption-beating quantum computers.

Unlike classical cryptography, which relies on algorithms to scramble data and keep it safe, quantum cryptography would be secure thanks to the weird quirks of quantum mechanics, according to IBM.

Breaking space news, the latest updates on rocket launches, skywatching events and more!

For example, in a paper published Jan. 21 in the journal Advanced Quantum Technologies, scientists describe a mission called "Quick3," which uses photons particles of light to transmit data through a massive satellite network.

"Security will be based on the information being encoded into individual light particles and then transmitted," Tobias Vogl, professor of quantum communication systems engineering at TUM and co-author of the paper, said in a statement. "The laws of physics do not permit this information to be extracted or copied."

That's because the very act of measuring a quantum system changes its state.

"When the information is intercepted, the light particles change their characteristics," he added. "Because we can measure these state changes, any attempt to intercept the transmitted data will be recognized immediately, regardless of future advances in technology."

The challenge with traditional Earth-based quantum cryptography, however, lies in transmitting data over long distances, with a maximum range of just a few hundred miles, the TUM scientists said in the statement. This is because light tends to scatter as it travels, and there's no easy way to copy or amplify these light signals through fiber optic cables.

Scientists have also experimented with storing encryption keys in entangled particles meaning the data is intrinsically shared between two particles over space and time no matter how far apart. A project in 2020, for example, demonstrated "quantum key distribution" (QKD) between two ground stations 700 miles apart (1,120 km).

When it comes to transmitting photons, however, at altitudes higher than 6 miles (10 kilometers), the atmosphere is so thin that light is not scattered or absorbed, so signals can be extended over longer distances.

The Quick3 system would involve the entire system for transmitting data in this way, including the components needed to build the satellites. The team has already tested each component on Earth. The next step will be to test the system in space, with a satellite launch scheduled for 2025.

They will probably need hundreds, or perhaps even thousands, of satellites for a fully working quantum communications system, the team said.

Go here to read the rest:
Future quantum computers will be no match for 'space encryption' that uses light to beam data around with the 1st ... - Space.com

Quantum Computing: A Glimpse of the Future at Rensselaer Polytechnic Institute – yTech

Summary: Rensselaer Polytechnic Institute (RPI) has recently magnified its technological landscape by inaugurating the IBM System One quantum computer, the first on a college campus. Echoing this milestone, RPI organized a Quantum Computing Day featuring insights from renowned experts who assessed the state of quantum computing, its strides, and the roadblocks yet to be navigated.

Rensselaer Polytechnic Institute (RPI) stands on the forefront of computational innovation with the introduction of IBMs pioneering quantum computer, IBM System One, to a college setting. In celebration of this leap, RPI called upon industry leaders and academics during its Quantum Computing Day. Jay M. Gambetta of IBM articulated quantum computings reliance on quantum mechanics to surpass classical computing limitations. With IBMs advancement from rudimentary qubits to the 127-qubit Eagle chip, he underscored the necessity of scaling systems and enhancing error correction. Quantum utility, he suggested, will only be achievable with the orchestration of larger systems, precision, and innovative algorithms.

Speakers such as James Misewich from Brookhaven National Laboratory highlighted quantum computings potential to unravel the complexities of quantum chromodynamics. Moreover, RPIs own Jian Shi and Ravishankar Sundararaman shed light on quantum computings applications in materials science, emphasizing the symbiotic relationship between this field and quantum chemistry for breakthrough discoveries.

Keynote speaker Steve M. Girvin from Yale University provided a reality check amidst quantum computings surrounding hype. He detailed the quantum sensors predicamenthigh sensitivity yields exceptional detection but also vulnerability to interference, making error correction a crucial function. Beyond error rectification, Girvin laid out the expansive challenges encompassing everything from algorithmic development to efficient quantum information routing, marking the emerging quantum era as one filled with innovation as well as intricate hurdles to overcome.

Expanding on the Technological Landscape of Quantum Computing

Quantum computing is currently one of the most rapidly evolving fields in the tech industry. With entities like IBM bringing advancements to the table, such as the IBM System One, the industry is witnessing significant milestones. The installation of this quantum computer at the Rensselaer Polytechnic Institute (RPI) stands as a testament to the increasing collaboration between academia and the tech industry, a symbiosis that aims to spur innovation and bridge the gap between theoretical and applied quantum mechanics.

As discussions during RPIs Quantum Computing Day revealed, quantum computing holds vast potential but also faces a multitude of challenges. The quantum industry is expected to grow considerably in the coming years. Market research forecasts point to a booming quantum computing market due to the high demand for quantum computing in banking, finance, pharmaceuticals, and even the energy sector. Analysts predict that the industry could reach billions of dollars as more practical and industry-specific applications are developed.

The potential applications in materials science, as discussed by Jian Shi and Ravishankar Sundararaman from RPI, are particularly promising. Researchers are optimistic about the role quantum computers will play in drug discovery, complex molecular modeling, and the development of new materials, with corresponding implications for sustainability and technological innovation.

However, the enthusiasm is tempered by the issues laid out by keynote speaker Steve M. Girvin from Yale University. The high sensitivity of quantum sensors, while beneficial for detection, also introduces greater susceptibility to interference, necessitating advanced error correction techniques. This underscores a broader set of challenges the industry faces, including the need for more robust quantum algorithms, the construction of scalable systems, and the development of infrastructure to support efficient quantum information routing. Addressing these challenges will be essential for quantum computing to transition from a largely experimental phase to broader practical utility.

In conclusion, while the quantum computing industry is poised for remarkable growth, hurdles such as error correction, system scalability, and the development of practical algorithms remain formidable. As highlighted by the events at RPI, the juxtaposition of rapid technological progress and the persistent hurdles provides a nuanced picture of an industry at the cusp of a potentially revolutionary technological era. For those interested in following the evolution of quantum computing, keeping an eye on institutions like Rensselaer Polytechnic Institute and industry leaders like IBM is critical. To learn more about how IBM is shaping the future of quantum computing, visit IBMs official website.

Natalia Toczkowska is a notable figure in digital health technology, recognized for her contributions in advancing telemedicine and healthcare apps. Her work focuses on developing innovative solutions to improve patient care and accessibility through technology. Toczkowskas research and development in creating user-friendly, secure digital platforms have been instrumental in enhancing the effectiveness of remote medical consultations and patient monitoring. Her dedication to integrating technology in healthcare has not only improved patient outcomes but also streamlined healthcare processes, making her a key influencer in the field of digital health innovation.

See the original post:
Quantum Computing: A Glimpse of the Future at Rensselaer Polytechnic Institute - yTech