Artificial intelligence in liver cancer new tools for research and patient management – Nature.com

Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209249 (2021).

Article PubMed Google Scholar

Rumgay, H. et al. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 161, 108118 (2022).

Article PubMed Google Scholar

European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182236 (2018).

Article Google Scholar

Ducreux, M. et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open. 8, 101567 (2023).

Article CAS PubMed PubMed Central Google Scholar

Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124, 686696 (2021).

Article PubMed Google Scholar

Friemel, J. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 21, 19511961 (2015).

Article CAS PubMed Google Scholar

Calderaro, J. et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J. Hepatol. 67, 727738 (2017).

Article CAS PubMed Google Scholar

Solinas, A. & Calvisi, D. F. Lessons from rare tumors: hepatic lymphoepithelioma-like carcinomas. World J. Gastroenterol. 21, 34723479 (2015).

Article PubMed PubMed Central Google Scholar

Salomao, M., Yu, W. M., Brown, R. S. Jr, Emond, J. C. & Lefkowitch, J. H. Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am. J. Surg. Pathol. 34, 16301636 (2010).

Article PubMed Google Scholar

Limousin, W. et al. Molecular-based targeted therapies in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma refractory to atezolizumab/bevacizumab. J. Hepatol. 79, 14501458 (2023).

Article CAS PubMed Google Scholar

Prueksapanich, P. et al. Liver fluke-associated biliary tract cancer. Gut Liver 12, 236245 (2018).

Article CAS PubMed Google Scholar

European Association for the Study of the Liver. EASL-ILCA clinical practice guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 79, 181208 (2023).

Article Google Scholar

Vithayathil, M., Bridegwater, J. & Khan, S. A. Medical therapies for intra-hepatic cholangiocarcinoma. J. Hepatol. 75, 981983 (2021).

Article PubMed Google Scholar

Nault, J.-C. & Villanueva, A. Biomarkers for hepatobiliary cancers. Hepatology 73, 115127 (2021).

Article PubMed Google Scholar

Brunt, E. et al. cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 68, 113126 (2018).

Article PubMed Google Scholar

Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 29, 101133 (2024).

Article PubMed Google Scholar

Wong, V. W.-S., Ekstedt, M., Wong, G. L.-H. & Hagstrm, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 79, 842852 (2023).

Article PubMed Google Scholar

Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95103 (2020).

Article PubMed Google Scholar

Jing, W. et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur. J. Cancer Prev. 21, 2431 (2012).

Article PubMed Google Scholar

Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 6088 (2017).

Article PubMed Google Scholar

Wagner, S. J. et al. Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study. Cancer Cell 41, 16501661.e4 (2023).

Article CAS PubMed PubMed Central Google Scholar

Khader, F. et al. Multimodal deep learning for integrating chest radiographs and clinical parameters: a case for transformers. Radiology 309, e230806 (2023).

Article PubMed Google Scholar

Reis-Filho, J. S. & Kather, J. N. Overcoming the challenges to implementation of artificial intelligence in pathology. J. Natl Cancer Inst. 115, 608612 (2023).

Article PubMed PubMed Central Google Scholar

Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 10261038 (2022).

Article PubMed Google Scholar

Cheng, N. et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images. Gastroenterology 162, 19481961.e7 (2022).

Article CAS PubMed Google Scholar

Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit. Med. 3, 23 (2020).

Article PubMed PubMed Central Google Scholar

Calderaro, J. et al. Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma. Nat. Commun. 14, 8290 (2023).

Article CAS PubMed PubMed Central Google Scholar

Chung, T. & Park, Y. N. Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma. Front. Med. 9, 857140 (2022).

Article Google Scholar

Albrecht, T. et al. Deep learning-enabled diagnosis of liver adenocarcinoma. Gastroenterology 165, 12621275 (2023).

Article PubMed Google Scholar

Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106110 (2021).

Article CAS PubMed Google Scholar

Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology 72, 20002013 (2020).

Article PubMed Google Scholar

Shi, J.-Y. et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut 70, 951961 (2021).

Article CAS PubMed Google Scholar

Xie, J. et al. Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images. Comput. Biol. Med. 146, 105520 (2022).

Article CAS PubMed Google Scholar

Sjblom, N. et al. Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis. Hepatol. Res. 53, 322333 (2023).

Article PubMed Google Scholar

Cifci, D., Foersch, S. & Kather, J. N. Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol. 257, 430444 (2022).

Article PubMed Google Scholar

Campanella, G. et al. H&E-based computational biomarker enables universal EGFR screening for lung adenocarcinoma. Preprint at https://doi.org/10.48550/arXiv.2206.10573 (2022).

Echle, A. et al. Artificial intelligence for detection of microsatellite instability in colorectal cancer a multicentric analysis of a pre-screening tool for clinical application. ESMO Open. 7, 100400 (2022).

Article CAS PubMed PubMed Central Google Scholar

Echle, A. et al. Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: a systematic literature review. ImmunoInformatics 34, 100008 (2021).

Article CAS Google Scholar

Farahmand, S. et al. Deep learning trained on hematoxylin and eosin tumor region of interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Mod. Pathol. 35, 4451 (2022).

Article CAS PubMed Google Scholar

Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800810 (2020).

Article CAS PubMed Google Scholar

Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789799 (2020).

Article CAS PubMed PubMed Central Google Scholar

Zhang, H. et al. Predicting tumor mutational burden from liver cancer pathological images using convolutional neural network. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (eds Yoo, I., Bi, J. & Hu, X) 920925 (IEEE, 2019).

Zeng, Q. et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol. 1, 116127 (2022).

Article Google Scholar

Macias, R. I. R. et al. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 71, 16691683 (2022).

CAS PubMed Google Scholar

Zeng, Q. et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol. 24, 14111422 (2023).

Article CAS PubMed Google Scholar

Oh, D.-Y. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. https://doi.org/10.1056/EVIDoa2200015 (2022).

Nam, D., Chapiro, J., Paradis, V., Seraphin, T. P. & Kather, J. N. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Rep. 4, 100443 (2022).

Article PubMed PubMed Central Google Scholar

Narita, K. et al. Iodine maps derived from sparse-view kV-switching dual-energy CT equipped with a deep learning reconstruction for diagnosis of hepatocellular carcinoma. Sci. Rep. 13, 3603 (2023).

Article CAS PubMed PubMed Central Google Scholar

Lee, H. J., Kim, J. S., Lee, J. K., Lee, H. A. & Pak, S. Ultra-low-dose hepatic multiphase CT using deep learning-based image reconstruction algorithm focused on arterial phase in chronic liver disease: a non-inferiority study. Eur. J. Radiol. 159, 110659 (2023).

Article PubMed Google Scholar

Liu, F. et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients. Liver Cancer 9, 397413 (2020).

Article PubMed PubMed Central Google Scholar

Huang, Z. et al. Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in hepatocellular carcinoma. World J. Gastrointest. Oncol. 14, 23802392 (2022).

Article PubMed PubMed Central Google Scholar

Mller-Franzes, G. et al. Using machine learning to reduce the need for contrast agents in breast MRI through synthetic images. Radiology 307, e222211 (2023).

Originally posted here:
Artificial intelligence in liver cancer new tools for research and patient management - Nature.com

Related Posts

Comments are closed.