We can all agree that Artificial Intelligence has created a huge impact on the worlds economy and will continue to do so since were aiding its growth by producing an immeasurable amount of data. Thanks to the advancement in Artificial Intelligence Algorithms we can deal with such humungous data. In this blog post, you will understand the different Artificial Intelligence Algorithms and how they can be used to solve real-world problems.
To get in-depth knowledge of Artificial Intelligence and Machine Learning, you can enroll for liveMachine Learning Engineer Master Programby Edureka with 24/7 support and lifetime access.
Heres a list of topics that will be covered in this post:
To simply put it, Artificial Intelligence is the science of getting machines to think and make decisions like human beings do.
Since the development of complex Artificial Intelligence Algorithms, it has been able to accomplish this by creating machines and robots that are applied in a wide range of fields including agriculture, healthcare, robotics, marketing, business analytics and many more.
Before we move any further lets try to understand what Machine Learning is and how does it is related to AI.
Generally, an algorithm takes some input and uses mathematics and logic to produce the output. In stark contrast, an Artificial Intelligence Algorithm takes a combination of both inputs and outputs simultaneously in order to learn the data and produce outputs when given new inputs.
This process of making machines learn from data is what we call MachineLearning.
Artificial Intelligence Algorithm Artificial Intelligence Algorithms Edureka
Machine Learning is a sub-field of Artificial Intelligence, where we try to bring AI into the equation by learning the input data.
If youre curious to learn more about Machine Learning, give the following blogs a read:
Machines can follow different approaches to learn depending on the data set and the problem that is being solved. In the below section well understand the different ways in which machines can learn.
Machine Learning can be done in the following ways:
Lets briefly understand the idea behind each type of Machine Learning.
In Supervised Learning, as the name rightly suggests, it involves making the algorithm learn the data while providing the correct answers or the labels to the data. This essentially means that the classes or the values to be predicted are known and well defined for the algorithm from the very beginning.
The other class falls under Unsupervised Learning, where, unlike supervised methods the algorithm doesnt have correct answers or any answers at all, it is up to the algorithms discretion to bring together similar data and understand it.
Along with these two prominent classes, we also have a third class, called Reinforcement Learning. Just as children are generally reinforced certain ideas, principles by either rewarding them when doing the right thing or punishing upon doing something wrong, in Reinforcement Learning, there are rewards given to the algorithm upon every correct prediction thus driving the accuracy higher up.
Heres a short video recorded by our Machine Learning experts. This will help you understand the difference between Supervised, Unsupervised and Reinforcement learning.
While the above three classes cover most fields comprehensively, we sometimes still land into the issue of having to bump up the performance of our model. In such cases it might make sense, to use ensemble methods (explained later) to get the accuracy higher up.
Now lets understand how Artificial Intelligence algorithms can be used to solve different types of problems.
Algorithms in each category, in essence, perform the same task of predicting outputs given unknown inputs, however, here data is the key driver when it comes to picking the right algorithm.
What follows is an outline of categories of Machine Learning problems with a brief overview of the same:
Heres a table that effectively differentiates each of these categories of problems.
Type Of Problems Solved Using AI Artificial Intelligence Algorithms Edureka
For each category of tasks, we can use specific algorithms. In the below section youll understand how a category of algorithms can be used as a solution to complex problems.
As mentioned above, different Artificial Intelligence algorithms can be used to solve a category of problems. In the below section well see the different types of algorithms that fall under Classification, Regression and Clustering problems.
Classification, as the name suggests is the act of dividing the dependent variable (the one we try to predict) into classes and then predict a class for a given input. It falls into the category of Supervised Machine Learning, where the data set needs to have the classes, to begin with.Thus, classification comes into play at any place where we need to predict an outcome, from a set number of fixed, predefined outcomes.
Classification uses an array of algorithms, a few of them listed below
Let us break them down and see where they fit in when it comes to application.
Naive Bayes algorithm follows the Bayes theorem, which unlike all the other algorithms in this list, follows a probabilistic approach. This essentially means, that instead of jumping straight into the data, the algorithm has a set of prior probabilities set for each of the classes for your target.
Once you feed in the data, the algorithm updates these prior probabilities to form something known as the posterior probability.Hence this can be extremely useful in cases where you need to predict whether your input belongs to either a given list of n classes or does it not belong to any of them. This can be possible using a probabilistic approach mainly because the probabilities thrown for all the n classes will be quite low.
Let us try to understand this with an example, of a person playing golf, depending on factors like the weather outside.
We first try to generate the frequencies with which certain events occur, in this case, we try to find frequencies of the person playing golf if its sunny, rainy, etc outside.
Naive Bayes Artificial Intelligence Algorithms Edureka
Using these frequencies we generate our apriori or initial probabilities (eg, the probability of overcast is 0.29 while the general probability of playing is 0.64)
Next up, we generate the posterior probabilities, where we try to answer questions like what would be the probability of it being sunny outside and the person would play golf?
We use the Bayesian formula here,
P(Yes | Sunny) = P( Sunny | Yes) * P(Yes) / P (Sunny)Here we have P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P( Yes)= 9/14 = 0.64
You can go through this A Comprehensive Guide To Naive Bayes blog to help you understand the math behind Naive Bayes.
The Decision Tree can essentially be summarized as a flowchart-like tree structure where each external node denotes a test on an attribute and each branch represents the outcome of that test. The leaf nodes contain the actual predicted labels. We start from the root of the tree and keep comparing attribute values until we reach a leaf node.
Decision Trees Artificial Intelligence Algorithms Edureka
We use this classifier when handling high dimensional data and when little time has been spent behind data preparation. However, a word of caution they tend to overfit and are prone to change drastically even with slight nuances in the training data.
You can through these blogs to learn more about Decision Trees:
Think of this as a committee of Decision Trees, where each decision tree has been fed a subset of the attributes of data and predicts on the basis of that subset. The average of the votes of all decision trees are taken into account and the answer is given.
An advantage of using Random Forest is that it alleviates the problem of overfitting which was present in a standalone decision tree, leading to a much more robust and accurate classifier.
Random Forest Artificial Intelligence Algorithms Edureka
As we can see in the above image, we have 5 decision trees trying to classify a color. Here 3 of these 5 decision trees predict blue and two have different outputs, namely green and red. In this case, we take the average of all the outputs, which gives blue as the highest weightage.
Heres a blog on Random Forest Classifier that will help you understand the working of Random forest algorithm and how it can be used to solve real-world problems.
Its a go-to method mainly for binary classification tasks. The term logistic comes from the logit function that is used in this method of classification. The logistic function, also called as the sigmoid function is an S-shaped curve that can take any real-valued number and map it between 0 and 1 but never exactly at those limits.
Logistic Regression Artificial Intelligence Algorithms Edureka
Lets assume that your little brother is trying to get into grad school, and you want to predict whether hell get admitted in his dream establishment. So, based on his CGPA and the past data, you can use Logistic Regression to foresee the outcome.
Logistic Regression allows you to analyze a set of variables and predict a categorical outcome. Since here we need to predict whether he will get into the school or not, which is a classification problem, logistic regression would be ideal.
Logistic Regression is used to predict house values, customer lifetime value in the insurance sector, etc.
An SVM is unique, in the sense that it tries to sort the data with the margins between two classes as far apart as possible. This is called maximum margin separation.
Another thing to take note of here is the fact that SVMs take into account only the support vectors while plotting the hyperplane, unlike linear regression which uses the entire dataset for that purpose. This makes SVMs quite useful in situations when data is in high dimensions.
Lets try to understand this with an example. In the below figure we have to classify data points into two different classes (squares and triangles).
Support Vector Machine Artificial Intelligence Algorithms Edureka
So, you start off by drawing a random hyperplane and then you check the distance between the hyperplane and the closest data points from each class. These closest data points to the hyperplane are known as Support vectors. And thats where the name comes from, Support Vector Machine.
The hyperplane is drawn based on these support vectors and an optimum hyperplane will have a maximum distance from each of the support vectors. And this distance between the hyperplane and the support vectors is known as the margin.
To sum it up, SVM is used to classify data by using a hyperplane, such that the distance between the hyperplane and the support vectors is maximum.
To learn more about SVM, you can go through this, Using SVM To Predict Heart Diseases blog.
KNN is a non-parametric (here non-parametric is just a fancy term which essentially means that KNN does not make any assumptions on the underlying data distribution), lazy learning algorithm (here lazy means that the training phase is fairly short).
Its purpose is to use a whole bunch of data points separated into several classes to predict the classification of a new sample point.
The following points serve as an overview of the general working of the algorithm:
However, there are some downsides to using KNN. These downsides mainly revolve around the fact that KNN works on storing the entire dataset and comparing new points to existing ones. This means that the storage space increases as our training set increases. This also means that the estimation time increases in proportion to the number of training points.
The following blogs will help you understand how the KNN algorithm works in depth:
Now lets understand how regression problems can be solved by using regression algorithms.
In the case of regression problems, the output is a continuous quantity. Meaning that we can use regression algorithms in cases where the target variable is a continuous variable. It falls into the category of Supervised Machine Learning, where the data set needs to have the labels, to begin with.
Linear Regression is the most simple and effective regression algorithm. It is utilized to gauge genuine qualities (cost of houses, number of calls, all out deals and so forth.) in view of the consistent variable(s). Here, we build up a connection between free and ward factors by fitting the best line. This best fit line is known as regression line and spoken to by a direct condition Y= a *X + b.
Linear Regression Artificial Intelligence Algorithms Edureka
Let us take a simple example here to understand linear regression.
Consider that you are given the challenge to estimate an unknown persons weight by just looking at them. With no other values in hand, this might look like a fairly difficult task, however using your past experience you know that generally speaking the taller someone is, the heavier they are compared to a shorter person of the same build. This is linear regression, in actuality!
However, linear regression is best used in approaches involving a low number of dimensions. Also, not every problem is linearly separable.
Some of the most popular applications of Linear regression are in financial portfolio prediction, salary forecasting, real estate predictions and in traffic in arriving at ETAs
Now lets discuss how clustering problems can be solved by using the K-means algorithm. Before that, lets understand what clustering is.
The basic idea behind clustering is to assign the input into two or more clusters based on feature similarity. It falls into the category of Unsupervised Machine Learning, where the algorithm learns the patterns and useful insights from data without any guidance (labeled data set).
For example, clustering viewers into similar groups based on their interests, age, geography, etc can be done by using Unsupervised Learning algorithms like K-Means Clustering.
K-means is probably the simplest unsupervised learning approach. The idea here is to gather similar data points together and bind them together in the form of a cluster. It does this by calculating the centroid of the group of data points.
To carry out effective clustering, k-means evaluates the distance between each point from the centroid of the cluster. Depending on the distance between the data point and the centroid, the data is assigned to the closest cluster. The goal of clustering is to determine the intrinsic grouping in a set of unlabelled data.
K-means Artificial Intelligence Algorithms Edureka
The K in K-means stands for the number of clusters formed. The number of clusters (basically the number of classes in which your new instances of data can fall into) is determined by the user.
K-means is used majorly in cases where the data set has points which are distinct and well separated from each other, otherwise, the clusters wont be far apart, rendering them inaccurate. Also, K-means should be avoided in cases where the data set contains a high amount of outliers or the data set is non-linear.
So that was a brief about K-means algorithm, to learn more you can go through this content recorded by our Machine Learning experts.
In cases where data is of abundance and prediction precision is of high value, boosting algorithms come into the picture.
Consider the scenario, you have a decision tree trained on a data set along with a whole bunch of hyperparameter tuning already performed, however, the final accuracy is still slightly off than youd like. In this case, while it might seem that you have run out of possible things to try, ensemble learning comes to the rescue.
Ensemble Learning Artificial Intelligence Algorithms Edureka
You have two different ways in which you can use ensemble learning, in this case, to bump up your accuracy. Let us say your decision tree was failing on a set of input test values, what you do now is, to train a new decision tree model and give a higher weighting to those input test values that your previous model struggled with. This is also called as Boosting, where our initial tree can be formally stated as a weak learner, and the mistakes caused by that model pave way for a better and stronger model.
Another way to approach this is by simply training a whole bunch of trees at once (this can be done fairly quickly and in a parallel fashion) and then taking outputs from each tree and averaging them out. So this way, if after training 10 trees, lets say 6 trees reply positive to input and 4 trees reply negative, the output you consider is positive. This is formally known as Bagging.
They are used to reduce the bias and variance in supervised learning techniques. There are a host of boosting algorithms available, a few of them discussed below:
Here is the original post:
Artificial Intelligence Algorithms For Beginners | Edureka
- What is Artificial Intelligence? How Does AI Work? | Built In [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Artificial Intelligence What it is and why it matters | SAS [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- artificial intelligence | Definition, Examples, and ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Benefits & Risks of Artificial Intelligence - Future of ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- What is AI (artificial intelligence)? - Definition from ... [Last Updated On: September 11th, 2019] [Originally Added On: September 11th, 2019]
- What is Artificial Intelligence (AI)? ... - Techopedia [Last Updated On: September 13th, 2019] [Originally Added On: September 13th, 2019]
- 9 Powerful Examples of Artificial Intelligence in Use ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- What's the Difference Between Robotics and Artificial ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- The Impact of Artificial Intelligence - Widespread Job Losses [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- Artificial Intelligence & the Pharma Industry: What's Next ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- Artificial Intelligence | GE Research [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- A.I. Artificial Intelligence (2001) - IMDb [Last Updated On: October 5th, 2019] [Originally Added On: October 5th, 2019]
- 10 Best Artificial Intelligence Course & Certification [2019 ... [Last Updated On: October 15th, 2019] [Originally Added On: October 15th, 2019]
- Artificial Intelligence in Healthcare: the future is amazing ... [Last Updated On: October 15th, 2019] [Originally Added On: October 15th, 2019]
- Will Artificial Intelligence Help Resolve the Food Crisis? - Inter Press Service [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Two-thirds of employees would trust a robot boss more than a real one - World Economic Forum [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- UofL partners with industry experts to launch Artificial Intelligence Innovation Consortium Lane Report | Kentucky Business & Economic News - The... [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- China Sees Surge of Edtech Investments With Focus on Artificial Intelligence - Karma [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- NIST researchers use artificial intelligence for quality control of stem cell-derived tissues - National Institutes of Health [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Indiana University Touts Big Red 200 and Artificial Intelligence at SC19 - HPCwire [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- One way for the Pentagon to prove it's serious about artificial intelligence - C4ISRNet [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial Intelligence Will Enable the Future, Blockchain Will Secure It - Cointelegraph [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial intelligence has become a driving force in everyday life, says LivePerson CEO - CNBC [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- 4 Reasons to Use Artificial Intelligence in Your Next Embedded Design - DesignNews [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial Intelligence Essay - 966 Words | Bartleby [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- AI News: Track The Latest Artificial Intelligence Trends And ... [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- AI in contact centres: It's time to stop talking about artificial intelligence - Verdict [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Newsrooms have five years to embrace artificial intelligence or they risk becoming irrelevant - Journalism.co.uk [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Scientists used IBM Watson to discover an ancient humanoid stick figure - Business Insider [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- The Mark Foundation Funds Eight Projects at the Intersection of Artificial Intelligence and Cancer Research - BioSpace [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Colorado at the forefront of AI and what it means for jobs of the future - The Denver Channel [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Highlights: Addressing fairness in the context of artificial intelligence - Brookings Institution [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Artificial intelligence won't kill journalism or save it, but the sooner newsrooms buy in, the better - Nieman Journalism Lab at Harvard [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- How To Get Your Rsum Past The Artificial Intelligence Gatekeepers - Forbes [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Epiq expands company-wide initiative to accelerate the deployment of artificial intelligence for clients globally - GlobeNewswire [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Preparing the Military for a Role on an Artificial Intelligence Battlefield - The National Interest Online [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Podcast decodes ethics in artificial intelligence and its relevance to public - Daily Bruin [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Global Military Artificial Intelligence (AI) and Cybernetics Market Report, 2019-2024: Focus on Platforms, Technologies, Applications and Services -... [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Artificial intelligence warning: Development of AI is comparable to nuclear bomb - Express.co.uk [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Google's new study reveals 'Artificial Intelligence benefiting journalism' - Digital Information World [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial Intelligence (AI) in Retail Market worth $15.3 billion by 2025 - Exclusive Report by Meticulous Research - GlobeNewswire [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- With artificial intelligence to a better wood product - Newswise [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Report to Congress on Artificial Intelligence and National Security - USNI News [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Most plastic is not getting recycled, and AI robots could be a solution - Business Insider [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Fujifilm Showcases Artificial Intelligence Initiative And Advances AI - AiThority [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial intelligence could be one of the most valuable tools mankind has built - here's one small but meani - Business Insider India [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial Intelligence: A Need of Modern 'Intelligent' Education - Thrive Global [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Drones And Artificial Intelligence Help Combat The San Francisco Bays Trash Problem - Forbes [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- DesignCon Expands Into Artificial Intelligence, Automotive, 5G, IoT, and More For 2020 Edition - I-Connect007 [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Is St. Louis ready for artificial intelligence? It will steal white-collar jobs here, too - STLtoday.com [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- IT chiefs recognise the risks of artificial intelligence bias - ComputerWeekly.com [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- PNNL researchers working to improve doctor-patient care through artificial intelligence - NBC Right Now [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- How Augmented Reality and Artificial Intelligence Are Helping Entrepreneurs Create a Better Customer Experience - CTOvision [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Manufacturing Leaders' Summit: Realising the promise of Artificial Intelligence - Manufacturer.com [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- 2019 Artificial Intelligence in Precision Health - Dedication to Discuss & Analyze AI Products Related to Precision Healthcare Already Available -... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Artificial intelligence will affect Salt Lake, Ogden more than most areas in the nation, study shows - KSL.com [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- It Pays To Break Artificial Intelligence Out Of The Lab, Study Confirms - Forbes [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Best Artificial Intelligence Stocks of 2019 -- and The Top AI Stock for 2020 - The Motley Fool [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Artificial Intelligence of Things (AIoT) Market Research Report 2019-2024 - Embedded AI in Support of IoT Things/Objects Will Reach $4.6B Globally by... [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- How Augmented Reality and Artificial Intelligence Are Helping Entrepreneurs Create a Better Customer Experience - Entrepreneur [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- SC Proposes Introduction Of Artificial Intelligence In Justice Delivery System - Inc42 Media [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Artificial intelligence in FX 'may be hype' - FX Week [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Fujifilm Showcases Artificial Intelligence Initiative And Advances at RSNA 2019 - Imaging Technology News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The Surprising Way Artificial Intelligence Is Transforming Transportation - Forbes [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Artificial Intelligence in 2020: The Architecture and the Infrastructure - Gigaom [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- AI IN BANKING: Artificial intelligence could be a near $450 billion opportunity for banks - here are the strat - Business Insider India [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- The impact of artificial intelligence on humans - Bangkok Post [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- Should the EU embrace artificial intelligence, or fear it? - EURACTIV [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- BioSig Technologies Announces New Collaboration on Development of Artificial Intelligence Solutions in Healthcare - GlobeNewswire [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial intelligence-based fitness is promising but may not be for everyone - Livemint [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Pondering the Ethics of Artificial Intelligence in Health Care Kansas City Experts Team Up on Emerging - Flatland [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Baidu Leads the Way in Innovation with 5712 Artificial Intelligence Patent Applications - GlobeNewswire [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial Intelligence and National Security, and More from CRS - Secrecy News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Longer Looks: The Psychology Of Voting; Overexcited Neurons And Artificial Intelligence; And More - Kaiser Health News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Emotion Artificial Intelligence Market Business Opportunities and Forecast from 2019-2025 | Eyesight Technologies, Affectiva - The Connect Report [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- The next generation of user experience is artificially intelligent - ZDNet [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- What Jobs Will Artificial Intelligence Affect? - EHS Today [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Will the next Mozart or Picasso come from artificial intelligence? No, but here's what might happen instead - Ladders [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial intelligence apps, Parkinsons and me - BBC News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- VA launches National Artificial Intelligence Institute to drive research and development - FierceHealthcare [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]