Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review | npj Imaging – Nature.com

Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 20162020. Neuro-Oncol 25, iv1iv99 (2023).

Article PubMed Google Scholar

Weller, M. et al. Glioma. Nat. Rev. Dis. Primer 1, 15017 (2015).

Article Google Scholar

Yang, K. et al. Glioma targeted therapy: insight into future of molecular approaches. Mol. Cancer 21, 39 (2022).

Article CAS PubMed PubMed Central Google Scholar

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987996 (2005).

Article CAS PubMed Google Scholar

Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 9971003 (2005).

Article CAS PubMed Google Scholar

Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol 23, 12311251 (2021).

Article CAS PubMed PubMed Central Google Scholar

Horbinski, C., Berger, T., Packer, R. J. & Wen, P. Y. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat. Rev. Neurol. 18, 515529 (2022).

Article PubMed Google Scholar

Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124, 686696 (2021).

Article PubMed Google Scholar

Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 10261038 (2022).

Article PubMed Google Scholar

van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in histopathology: the path to the clinic. Nat. Med. 27, 775784 (2021).

Article PubMed Google Scholar

Zhang, P. et al. Effective nuclei segmentation with sparse shape prior and dynamic occlusion constraint for glioblastoma pathology images. J. Med. Imaging 6, 017502 (2019).

Article Google Scholar

Li, X., Wang, Y., Tang, Q., Fan, Z. & Yu, J. Dual U-Net for the segmentation of overlapping glioma nuclei. IEEE Access 7, 8404084052 (2019).

Article Google Scholar

Kurc, T. et al. Segmentation and classification in digital pathology for glioma research: challenges and deep learning approaches. Front. Neurosci. 14, 27 (2020).

Article PubMed PubMed Central Google Scholar

Xu, Y. et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics 18, 281 (2017).

Article PubMed PubMed Central Google Scholar

Fukuma, K., Surya Prasath, V. B., Kawanaka, H., Aronow, B. J. & Takase, H. A study on feature extraction and disease stage classification for Glioma pathology images. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 21502156 https://doi.org/10.1109/FUZZ-IEEE.2016.7737958 (2016).

Kalra, S. et al. Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence. Npj Digit. Med. 3, 115 (2020).

Article Google Scholar

Winkelmaier, G., Koch, B., Bogardus, S., Borowsky, A. D. & Parvin, B. Biomarkers of tumor heterogeneity in glioblastoma multiforme cohort of TCGA. Cancers 15, 2387 (2023).

Article CAS PubMed PubMed Central Google Scholar

Yuan, M. et al. Image-based subtype classification for glioblastoma using deep learning: prognostic significance and biologic relevance. JCO Clin. Cancer Inform. 8, e2300154, https://doi.org/10.1200/CCI.23.00154 (2024).

Article PubMed Google Scholar

Liu, X.-P. et al. Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning. Neuro-Oncol 25, 6881 (2023).

Article CAS PubMed Google Scholar

Song, J. et al. Enhancing spatial transcriptomics analysis by integrating image-aware deep learning methods. in Biocomputing 2024 450463 (WORLD SCIENTIFIC, 2023). https://doi.org/10.1142/9789811286421_0035.

Zadeh Shirazi, A. et al. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma. Br. J. Cancer 125, 337350 (2021).

Article PubMed PubMed Central Google Scholar

Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H. & Gevaert, O. Spatial cellular architecture predicts prognosis in glioblastoma. Nat. Commun. 14, 4122 (2023).

Article CAS PubMed PubMed Central Google Scholar

Luo, J., Pan, M., Mo, K., Mao, Y. & Zou, D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin. Cancer Biol. 91, 110123 (2023).

Article CAS PubMed Google Scholar

Zadeh Shirazi, A. et al. The application of deep convolutional neural networks to brain cancer images: a survey. J. Pers. Med. 10, 224 (2020).

Article PubMed PubMed Central Google Scholar

Sotoudeh, H. et al. Artificial intelligence in the management of glioma: era of personalized medicine. Front. Oncol. 9, 768 (2019).

Article PubMed PubMed Central Google Scholar

Philip, A. K., Samuel, B. A., Bhatia, S., Khalifa, S. A. M. & El-Seedi, H. R. Artificial intelligence and precision medicine: a new frontier for the treatment of brain tumors. Life 13, 24 (2023).

Article CAS Google Scholar

Jin, W. et al. Artificial intelligence in glioma imaging: challenges and advances. J. Neural Eng. 17, 021002 (2020).

Article PubMed Google Scholar

C, M. et al. Artificial intelligence in brain tumor imaging: a step toward personalized medicine. Curr. Oncol. 30, 26732701 (2023).

Article PubMed PubMed Central Google Scholar

Liu, Y. & Wu, M. Deep learning in precision medicine and focus on glioma. Bioeng. Transl. Med. 8, e10553 (2023).

Article CAS PubMed PubMed Central Google Scholar

Bhatele, K. R. & Bhadauria, S. S. Machine learning application in Glioma classification: review and comparison analysis. Arch. Comput. Methods Eng. 29, 247274 (2022).

Article Google Scholar

Muhammad, K., Khan, S., Ser, J. D. & Albuquerque, V. H. C. Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans. Neural Netw. Learn. Syst. 32, 507522 (2021).

Article PubMed Google Scholar

Zhao, R. & Krauze, A. Survival prediction in gliomas: current state and novel approaches. Exon Publ. 151169 https://doi.org/10.36255/exonpublications.gliomas.2021.chapter9 (2021).

Alleman, K. et al. Multimodal deep learning-based prognostication in glioma patients: a systematic review. Cancers 15, 545 (2023).

Article PubMed PubMed Central Google Scholar

Wijethilake, N. et al. Glioma survival analysis empowered with data engineeringa survey. IEEE Access 9, 4316843191 (2021).

Article Google Scholar

Faust, K. et al. Integrating morphologic and molecular histopathological features through whole slide image registration and deep learning. Neuro-Oncol. Adv. 4, vdac001 (2022).

Article Google Scholar

Pytlarz, M., Wojnicki, K., Pilanc, P., Kaminska, B. & Crimi, A. Deep learning glioma grading with the tumor microenvironment analysis protocol for comprehensive learning, discovering, and quantifying microenvironmental features. J. Imaging Inform. Med. https://doi.org/10.1007/s10278-024-01008-x (2024).

McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 10611068 (2008).

Article CAS Google Scholar

Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462477 (2013).

Article CAS PubMed PubMed Central Google Scholar

The Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 372, 24812498 (2015).

Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115, E2970E2979 (2018).

Article CAS PubMed PubMed Central Google Scholar

Hewitt, K. J. et al. Direct image to subtype prediction for brain tumors using deep learning. Neuro-Oncol. Adv. 5, vdad139 (2023).

Article Google Scholar

Nasrallah, M. P. et al. Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma. Med 4, 526540.e4 (2023).

Article PubMed Google Scholar

Wang, W. et al. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Nat. Commun. 14, 6359 (2023).

Article CAS PubMed PubMed Central Google Scholar

Im, S. et al. Classification of diffuse glioma subtype from clinical-grade pathological images using deep transfer learning. Sensors 21, 3500 (2021).

Article PubMed PubMed Central Google Scholar

Li, Z. et al. Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors. iScience 26, 105872 (2023).

Article CAS PubMed Google Scholar

Shi, L. et al. Contribution of whole slide imaging-based deep learning in the assessment of intraoperative and postoperative sections in neuropathology. Brain Pathol 33, e13160 (2023).

Article PubMed PubMed Central Google Scholar

Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 24242433 https://doi.org/10.1109/CVPR.2016.266 (2016).

Jin, L. et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro-Oncol 23, 4452 (2021).

Article CAS PubMed Google Scholar

Jose, L. et al. Artificial intelligenceassisted classification of gliomas using whole slide images. Arch. Pathol. Lab. Med. 147, 916924 (2022).

Article Google Scholar

Wang, X., Price, S. & Li, C. Multi-task Learning of Histology and Molecular Markers for Classifying Diffuse Glioma. In Medical Image Computing and Computer Assisted Intervention MICCAI 2023 (eds. Greenspan, H. et al.) 551561 (Springer Nature Switzerland, Cham, 2023). https://doi.org/10.1007/978-3-031-43990-2_52.

Hsu, W.-W. et al. A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs. Sci. Rep. 12, 6111 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, X. et al. Combining radiology and pathology for automatic glioma classification. Front. Bioeng. Biotechnol. 10, 841958 (2022).

Article PubMed PubMed Central Google Scholar

Mallya, M. & Hamarneh, G. Deep multimodal guidance for medical image classification. in Medical Image Computing and Computer Assisted InterventionMICCAI 2022 (eds. Wang, L., Dou, Q., Fletcher, P. T., Speidel, S. & Li, S.) 298308 (Springer Nature Switzerland, 2022). https://doi.org/10.1007/978-3-031-16449-1_29.

Kim, G. J., Lee, T., Ahn, S., Uh, Y. & Kim, S. H. Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q codeletion status using weakly-supervised learning. Npj Precis. Oncol. 7, 19 (2023).

Google Scholar

Continued here:
Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review | npj Imaging - Nature.com

Related Posts

Comments are closed.