Feature The next time you ask Alexa to turn off your bedroom lights or make a computer write dodgy code, spare a thought for the planet. The back-end mechanics that make it all possible take up a lot of power, and these systems are getting hungrier.
Artificial intelligence began to gain traction in mainstream computing just over a decade ago when we worked out how to make GPUs handle the underlying calculations at scale. Now there's a machine learning algorithm for everything, but while the world marvels at the applications, some researchers are worried about the environmental expense.
One of the most frequently quoted papers on this topic, from the University of Massachusetts, analysed training costs on AI including Google's BERT natural language processing model. It found that the cost of training BERT on a GPU in carbon emissions was roughly the same as a trans-American jet flight.
Kate Saenko, associate professor of computer science at Boston University, worries that we're not doing enough to make AI more energy efficient. "The general trend in AI is going in the wrong direction for power consumption," she warns. "It's getting more expensive in terms of power to train the newer models."
The trend is exponential. Researchers associated with OpenAI wrote that the computing used to train the average model increases by a factor of 10 each year.
Most AI these days is based on machine learning (ML). This uses a neural network, which is a collection of nodes designed in layers. Each node has connections to nodes in the next. Each of these connections has a score known as a parameter or weight.
The neural network takes an input (such as a picture of a hotdog) and runs it through the layers of the neural network, each of which uses its parameters to produce an output. The final output is a judgement about the data (for example, was the original input a picture of a hotdog or not?)
Those weights don't come preconfigured. You have to calculate them. You do that by showing the network lots of labelled pictures of hot dogs and not hot dogs. You keep training it until the parameters are optimised, which means that they spit out the correct judgement for each piece of data as often as possible. The more accurate the model, the better it will be when making judgements about new data.
You don't just train an AI model once. You keep doing it, adjusting various aspects of the neural network each time to maximise the right answers. These aspects are called hyperparameters, and they include variables such as the number of neurons in each layer and the number of layers in each network. A lot of that tuning is trial and error, which can mean many training passes. Chewing through all that data is already expensive enough, but doing it repeatedly uses even more electrons.
The reason that the models are taking more power to train is that researchers are throwing more data at them to produce more accurate results, explains Lukas Biewald. He's the CEO of Weights and Biases, a company that helps AI researchers organise the training data for all these models while monitoring their compute usage.
"What's alarming about about it is that it seems like for every factor of 10 that you increase the scale of your model training, you get a better model," he says.
Yes, but the model's accuracy doesn't increase by a factor of 10. Jesse Dodge, postdoctoral researcher at the Allen Institute for AI and co-author of a paper called Green AI, notes studies pointing to the diminishing returns of throwing more data at a neural network.
So why do it?
"There's a long tail of things to learn," he explains. ML algorithms can train on the most commonly-seen data, but the edge cases the confusing examples that rarely come up are harder to optimise for.
Our hotdog recognition system might be fine until some clown comes along in a hotdog costume, or it sees a picture of a hotdog-shaped van. A language processing model might be able to understand 95 per cent of what people say, but wouldn't it be great if it could handle exotic words that hardly anyone uses? More importantly, your autonomous vehicle must be able to stop in dangerous conditions that rarely ever arise.
"A common thing that we see in machine learning is that it takes exponentially more and more data to get out into that long tail," Dodge says.
Piling on all this data data doesn't just slurp power on the compute side, points out Saenko; it also burdens other parts of the computing infrastructure. "The larger the data, the more overhead," she says. "Even transferring the data from the hard drive to the GPU memory is power intensive."
There are various attempts to mitigate this problem. It starts at the data centre level, where hyperscalers are doing their best to switch to renewables so that they can at least hammer their servers responsibly.
Another approach involves taking a more calculated approach when tweaking your hyperparameters. Weights and Biases offers a "hyperparameter sweep" service that uses Bayesian algorithms to narrow the field of potential changes with each training pass. It also offers an "early stopping" algorithm which halts a training pass early on if the optimisation isn't panning out.
Not all approaches involve fancy hardware and software footwork. Some are just about sharing. Dodge points out that researchers could amortise the carbon cost of their model training by sharing the end result. Trained models released in the public domain can be used without retraining, but people don't take enough advantage of that.
"In the AI community, we often train models and then don't release them," he says. "Or the next people that want to build on our work just rerun the experiments that we did."
Those trained models can also be fine tuned with additional data, enabling people to tweak existing optimisations for new applications without retraining the entire model from scratch.
Making training more efficient only tackles one part of the problem, and it isn't the most important part. The other side of the AI story is inference. This is when a computer runs new data through a trained model to evaluate it, recognising hotdogs it has never seen before. It still takes power, and the rapid adoption of AI is making it more of a problem. Every time you ask Siri how to cook rice properly, it uses inference power in the cloud.
One way to reduce model size is to cut down the number of parameters. AI models often use vast numbers of weights in a neural network because data scientists aren't sure which ones will be most useful. Saenko and her colleagues have researched reducing the number of parameters using a concept that they call shape shifter networks that share some of the parameters in the final model.
"You might train a much bigger network and then distil it into a smaller one so that you can deploy a smaller network and save computation and deployment at inference time," she says.
Companies are also working on hardware innovations to cope with this increased inference load. Google's Tensor Processing Units (TPUs) are tailored to handle both training and inference more efficiently, for example.
Solving the inference problem is especially tricky because we don't know where a lot of it will happen in the long term. The move to edge computing could see more inference jobs happening in lower-footprint devices rather than in the cloud. The trick there is to make the models small enough and to introduce hardware advances that will help to make local AI computation more cost-effective.
"How much do companies care about running their inference on smaller devices rather than in the cloud on GPUs?" Saenko muses. "There is not yet that much AI running standalone on edge devices to really give us some clear impetus to figure out a good strategy for that."
Still, there is movement. Apple and Qualcomm have already produced tailored silicon for inference on smart phones, and startups are becoming increasingly innovative in anticipation of edge-based inference. For example, semiconductor startup Mythic launched an AI processor focused on edge-based AI that uses analogue circuitry and in-memory computing to save power. It's targeting applications including object detection and depth estimation, which could see the chips turn up in everything from factories to surveillance cameras.
As companies grapple with whether to infer at the edge, the problem of making AI more energy efficient in the cloud remains. The key lies in resolving two opposing forces: on the one hand, everyone wants more energy efficient computing. On the other, researchers constantly strive for more accuracy.
Dodge notes that most academic AI papers today focus on the latter. Accuracy is winning out as companies strive to beat each other with better models, agrees Saenko. "It might take a lot of compute but it's worthwhile for people to claim that one or two percent improvement," she says.
She would like to see more researchers publish data on the power consumption of their models. This might inspire competition to drive efficiencies up and costs down.
The stakes may be more than just environmental, warns Biewald; they could be political too. What happens if computing consumption continues to go up by a factor of 10 each year?
"You have to buy the energy to train these models, and the only people that can realistically afford that will be Google and Microsoft and the 100 biggest corporations," he posits.
If we start seeing a growing inequality gap in AI research, with corporate interests out in front, carbon emissions could be the least of our worries.
Follow this link:
AI caramba, those neural networks are power-hungry: Counting the environmental cost of artificial intelligence - The Register
- What is Artificial Intelligence? How Does AI Work? | Built In [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Artificial Intelligence What it is and why it matters | SAS [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- artificial intelligence | Definition, Examples, and ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Benefits & Risks of Artificial Intelligence - Future of ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- What is AI (artificial intelligence)? - Definition from ... [Last Updated On: September 11th, 2019] [Originally Added On: September 11th, 2019]
- What is Artificial Intelligence (AI)? ... - Techopedia [Last Updated On: September 13th, 2019] [Originally Added On: September 13th, 2019]
- 9 Powerful Examples of Artificial Intelligence in Use ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- What's the Difference Between Robotics and Artificial ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- The Impact of Artificial Intelligence - Widespread Job Losses [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- Artificial Intelligence & the Pharma Industry: What's Next ... [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- Artificial Intelligence | GE Research [Last Updated On: September 18th, 2019] [Originally Added On: September 18th, 2019]
- A.I. Artificial Intelligence (2001) - IMDb [Last Updated On: October 5th, 2019] [Originally Added On: October 5th, 2019]
- 10 Best Artificial Intelligence Course & Certification [2019 ... [Last Updated On: October 15th, 2019] [Originally Added On: October 15th, 2019]
- Artificial Intelligence in Healthcare: the future is amazing ... [Last Updated On: October 15th, 2019] [Originally Added On: October 15th, 2019]
- Will Artificial Intelligence Help Resolve the Food Crisis? - Inter Press Service [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Two-thirds of employees would trust a robot boss more than a real one - World Economic Forum [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- UofL partners with industry experts to launch Artificial Intelligence Innovation Consortium Lane Report | Kentucky Business & Economic News - The... [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- China Sees Surge of Edtech Investments With Focus on Artificial Intelligence - Karma [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- NIST researchers use artificial intelligence for quality control of stem cell-derived tissues - National Institutes of Health [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Indiana University Touts Big Red 200 and Artificial Intelligence at SC19 - HPCwire [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- One way for the Pentagon to prove it's serious about artificial intelligence - C4ISRNet [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial Intelligence Will Enable the Future, Blockchain Will Secure It - Cointelegraph [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial intelligence has become a driving force in everyday life, says LivePerson CEO - CNBC [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- 4 Reasons to Use Artificial Intelligence in Your Next Embedded Design - DesignNews [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- Artificial Intelligence Essay - 966 Words | Bartleby [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- AI News: Track The Latest Artificial Intelligence Trends And ... [Last Updated On: November 18th, 2019] [Originally Added On: November 18th, 2019]
- AI in contact centres: It's time to stop talking about artificial intelligence - Verdict [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Newsrooms have five years to embrace artificial intelligence or they risk becoming irrelevant - Journalism.co.uk [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Scientists used IBM Watson to discover an ancient humanoid stick figure - Business Insider [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- The Mark Foundation Funds Eight Projects at the Intersection of Artificial Intelligence and Cancer Research - BioSpace [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Colorado at the forefront of AI and what it means for jobs of the future - The Denver Channel [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Highlights: Addressing fairness in the context of artificial intelligence - Brookings Institution [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Artificial intelligence won't kill journalism or save it, but the sooner newsrooms buy in, the better - Nieman Journalism Lab at Harvard [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- How To Get Your Rsum Past The Artificial Intelligence Gatekeepers - Forbes [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Epiq expands company-wide initiative to accelerate the deployment of artificial intelligence for clients globally - GlobeNewswire [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Preparing the Military for a Role on an Artificial Intelligence Battlefield - The National Interest Online [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Podcast decodes ethics in artificial intelligence and its relevance to public - Daily Bruin [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Global Military Artificial Intelligence (AI) and Cybernetics Market Report, 2019-2024: Focus on Platforms, Technologies, Applications and Services -... [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Artificial intelligence warning: Development of AI is comparable to nuclear bomb - Express.co.uk [Last Updated On: November 20th, 2019] [Originally Added On: November 20th, 2019]
- Google's new study reveals 'Artificial Intelligence benefiting journalism' - Digital Information World [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial Intelligence (AI) in Retail Market worth $15.3 billion by 2025 - Exclusive Report by Meticulous Research - GlobeNewswire [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- With artificial intelligence to a better wood product - Newswise [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Report to Congress on Artificial Intelligence and National Security - USNI News [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Most plastic is not getting recycled, and AI robots could be a solution - Business Insider [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Fujifilm Showcases Artificial Intelligence Initiative And Advances AI - AiThority [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial intelligence could be one of the most valuable tools mankind has built - here's one small but meani - Business Insider India [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Artificial Intelligence: A Need of Modern 'Intelligent' Education - Thrive Global [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Drones And Artificial Intelligence Help Combat The San Francisco Bays Trash Problem - Forbes [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- DesignCon Expands Into Artificial Intelligence, Automotive, 5G, IoT, and More For 2020 Edition - I-Connect007 [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- Is St. Louis ready for artificial intelligence? It will steal white-collar jobs here, too - STLtoday.com [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- IT chiefs recognise the risks of artificial intelligence bias - ComputerWeekly.com [Last Updated On: November 23rd, 2019] [Originally Added On: November 23rd, 2019]
- PNNL researchers working to improve doctor-patient care through artificial intelligence - NBC Right Now [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- How Augmented Reality and Artificial Intelligence Are Helping Entrepreneurs Create a Better Customer Experience - CTOvision [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Manufacturing Leaders' Summit: Realising the promise of Artificial Intelligence - Manufacturer.com [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- 2019 Artificial Intelligence in Precision Health - Dedication to Discuss & Analyze AI Products Related to Precision Healthcare Already Available -... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Artificial intelligence will affect Salt Lake, Ogden more than most areas in the nation, study shows - KSL.com [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- It Pays To Break Artificial Intelligence Out Of The Lab, Study Confirms - Forbes [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Best Artificial Intelligence Stocks of 2019 -- and The Top AI Stock for 2020 - The Motley Fool [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Artificial Intelligence of Things (AIoT) Market Research Report 2019-2024 - Embedded AI in Support of IoT Things/Objects Will Reach $4.6B Globally by... [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- How Augmented Reality and Artificial Intelligence Are Helping Entrepreneurs Create a Better Customer Experience - Entrepreneur [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- SC Proposes Introduction Of Artificial Intelligence In Justice Delivery System - Inc42 Media [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Artificial intelligence in FX 'may be hype' - FX Week [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Fujifilm Showcases Artificial Intelligence Initiative And Advances at RSNA 2019 - Imaging Technology News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The Surprising Way Artificial Intelligence Is Transforming Transportation - Forbes [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Artificial Intelligence in 2020: The Architecture and the Infrastructure - Gigaom [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- AI IN BANKING: Artificial intelligence could be a near $450 billion opportunity for banks - here are the strat - Business Insider India [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- The impact of artificial intelligence on humans - Bangkok Post [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- Should the EU embrace artificial intelligence, or fear it? - EURACTIV [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- BioSig Technologies Announces New Collaboration on Development of Artificial Intelligence Solutions in Healthcare - GlobeNewswire [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial intelligence-based fitness is promising but may not be for everyone - Livemint [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Pondering the Ethics of Artificial Intelligence in Health Care Kansas City Experts Team Up on Emerging - Flatland [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Baidu Leads the Way in Innovation with 5712 Artificial Intelligence Patent Applications - GlobeNewswire [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial Intelligence and National Security, and More from CRS - Secrecy News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Longer Looks: The Psychology Of Voting; Overexcited Neurons And Artificial Intelligence; And More - Kaiser Health News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Emotion Artificial Intelligence Market Business Opportunities and Forecast from 2019-2025 | Eyesight Technologies, Affectiva - The Connect Report [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- The next generation of user experience is artificially intelligent - ZDNet [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- What Jobs Will Artificial Intelligence Affect? - EHS Today [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Will the next Mozart or Picasso come from artificial intelligence? No, but here's what might happen instead - Ladders [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Artificial intelligence apps, Parkinsons and me - BBC News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- VA launches National Artificial Intelligence Institute to drive research and development - FierceHealthcare [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]