Quantum computing systems are difficult to understand because they do not behave like the everyday world we live in. But this counterintuitive behavior is what allows them to perform calculations at rate that would not be possible on a typical computer.

Todays computers store information as bits, with each transistor holding either a 1 or a 0. But thanks to something called the superposition principle behavior exhibited by subatomic particles like electrons and photons, the fundamental particles of light a quantum bit, or qubit, can store a 1 and a 0 at the same time. This means two qubits can hold four values at once. As you expand the number of qubits, the machine becomes exponentially more powerful.

Todd Holmdahl, who oversees the quantum project at Microsoft, said he envisioned a quantum computer as something that could instantly find its way through a maze. A typical computer will try one path and get blocked and then try another and another and another, he said. A quantum computer can try all paths at the same time.

The trouble is that storing information in a quantum system for more than a short amount of time is very difficult, and this short coherence time leads to errors in calculations. But over the past two decades, Mr. Schoelkopf and other physicists have worked to solve this problem using what are called superconducting circuits. They have built qubits from materials that exhibit quantum properties when cooled to extremely low temperatures.

With this technique, they have shown that, every three years or so, they can improve coherence times by a factor of 10. This is known as Schoelkopfs Law, a playful ode to Moores Law, the rule that says the number of transistors on computer chips will double every two years.

Schoelkopfs Law started as a joke, but now we use it in many of our research papers, said Isaac Chuang, a professor at the Massachusetts Institute of Technology. No one expected this would be possible, but the improvement has been exponential.

These superconducting circuits have become the primary area of quantum computing research across the industry. One of Mr. Schoelkopfs former students now leads the quantum computing program at IBM. The founder of Rigetti Computing studied with Michel Devoret, one of the other Yale professors behind Quantum Circuits.

In recent months, after grabbing a team of top researchers from the University of California, Santa Barbara, Google indicated it is on the verge of using this method to build a machine that can achieve quantum supremacy when a quantum machine performs a task that would be impossible on your laptop or any other machine that obeys the laws of classical physics.

There are other areas of research that show promise. Microsoft, for example, is betting on particles known as anyons. But superconducting circuits appear likely to be the first systems that will bear real fruit.

The belief is that quantum machines will eventually analyze the interactions between physical molecules with a precision that is not possible today, something that could radically accelerate the development of new medications. Google and others also believe that these systems can significantly accelerate machine learning, the field of teaching computers to learn tasks on their own by analyzing data or experiments with certain behavior.

A quantum computer could also be able to break the encryption algorithms that guard the worlds most sensitive corporate and government data. With so much at stake, it is no surprise that so many companies are betting on this technology, including start-ups like Quantum Circuits.

The deck is stacked against the smaller players, because the big-name companies have so much more money to throw at the problem. But start-ups have their own advantages, even in such a complex and expensive area of research.

Small teams of exceptional people can do exceptional things, said Bill Coughran, who helped oversee the creation of Googles vast internet infrastructure and is now investing in Mr. Schoelkopfs company as a partner at Sequoia. I have yet to see large teams inside big companies doing anything tremendously innovative.

Though Quantum Circuits is using the same quantum method as its bigger competitors, Mr. Schoelkopf argued that his company has an edge because it is tackling the problem differently. Rather than building one large quantum machine, it is constructing a series of tiny machines that can be networked together. He said this will make it easier to correct errors in quantum calculations one of the main difficulties in building one of these complex machines.

But each of the big companies insist that they hold an advantage and each is loudly trumpeting its progress, even if a working machine is still years away.

Mr. Coughran said that he and Sequoia envision Quantum Circuits evolving into a company that can deliver quantum computing to any business or researcher that needs it. Another investor, Canaans Brendan Dickinson, said that if a company like this develops a viable quantum machine, it will become a prime acquisition target.

The promise of a large quantum computer is incredibly powerful, Mr. Dickinson said. It will solve problems we cant even imagine right now.

An earlier version of this article misstated the surname of one of the investors in Quantum Circuits. As correctly noted elsewhere in the article, he is Brendan Dickinson, not Dickson.

View post:

Yale Professors Race Google and IBM to the First Quantum …

- Senate bills would make quantum computing a priority - June 10th, 2018
- What is quantum computing? - Definition from WhatIs.com - February 5th, 2018
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... - January 26th, 2018
- IBM puts its quantum computer to work in relaxing, nerdy ASMR ... - January 8th, 2018
- Quantum computing is going to change the world. Here's what ... - January 8th, 2018
- Is Quantum Computing an Existential Threat to Blockchain ... - December 25th, 2017
- What is Quantum Computing? | SAP News Center - December 23rd, 2017
- Quantum Computing Explained | What is Quantum Computing? - December 21st, 2017
- New silicon structure opens the gate to quantum computers - December 14th, 2017
- Microsoft offers developers a preview of its quantum ... - December 12th, 2017
- Quantum Computing Is the Next Big Security Risk | WIRED - December 8th, 2017
- IBM's processor pushes quantum computing ... - engadget.com - November 16th, 2017
- Quantum computing - news.microsoft.com - November 1st, 2017
- Intel Takes First Steps To Universal Quantum Computing - October 13th, 2017
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - October 13th, 2017
- quantum computing - engadget.com - October 13th, 2017
- Quantum Computing | Intel Newsroom - October 13th, 2017
- What will you actually use quantum computing for? | ZDNet - October 11th, 2017
- Here's what quantum computing is and why it matters - October 6th, 2017
- Microsoft just upped its multi-million bet on quantum computing - ZDNet - September 7th, 2017
- Microsoft's Aussie quantum computing lab set to scale up next-gen ... - ARNnet - September 7th, 2017
- An Entirely New Type of Quantum Computing Has Just Been Invented - Futurism - September 7th, 2017
- Quantum computing event explores the implications for business - Cambridge Network - August 30th, 2017
- Quantum Computing Is Coming at Us Fast, So Here's Everything You Need to Know - ScienceAlert - August 27th, 2017
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle - August 25th, 2017
- Commonwealth Bank investing in Australia's first quantum computer company - Which-50 (blog) - August 25th, 2017
- How quantum mechanics can change computing - The Conversation US - August 23rd, 2017
- Introducing Australia's first quantum computing hardware company - Computerworld Australia - August 23rd, 2017
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC - August 23rd, 2017
- $495.3 Million Quantum Computing Market 2017 by Revenue Source, Application, Industry, and Geography - Global ... - PR Newswire (press release) - August 18th, 2017
- Physicists Have Made Exotic Quantum States From Light - Futurism - August 16th, 2017
- Machine learning tackles quantum error correction - Phys.Org - August 15th, 2017
- Quantum Internet Is 13 Years Away. Wait, What's Quantum Internet? - WIRED - August 15th, 2017
- Blind quantum computing for everyone - Phys.org - Phys.Org - August 12th, 2017
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED - August 12th, 2017
- Quantum Computing Market Worth 495.3 Million USD by 2023 | 08 ... - Markets Insider - August 10th, 2017
- China uses a quantum satellite to transmit potentially unhackable data - CNBC - August 10th, 2017
- Physicists Take Big Step Towards Quantum Computing and ... - Universe Today - August 1st, 2017
- Why you might trust a quantum computer with secretseven over ... - Phys.Org - July 12th, 2017
- Quantum-computer node uses two different ion species - physicsworld.com - July 10th, 2017
- Quantum Computers vs Bitcoin How Worried Should We Be? - The Merkle - July 10th, 2017
- Quantum cheques could be a forgery-free way to move money - New Scientist - July 10th, 2017
- Technique for measuring and controlling electron state is a ... - UCLA Newsroom - July 9th, 2017
- Quantum Computers Made Even More Powerful with New microchip generating 'Qudits' - TrendinTech - July 8th, 2017
- Quantum Computing Record Broken - Wall Street Pit - July 8th, 2017
- Alkermes and IBM's quantum computing. Who'll be the big winner? Malcolm Berko - Durham Herald Sun - July 6th, 2017
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum - July 1st, 2017
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think - July 1st, 2017
- Quantum Computing Becomes More Accessible - Scientific American - July 1st, 2017
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design - June 2nd, 2017
- Toward mass-producible quantum computers | MIT News - MIT News - June 2nd, 2017
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA - June 2nd, 2017
- IBM boosts power of quantum computing processors as it lays ... - www.computing.co.uk - May 22nd, 2017
- IBM makes leap in quantum computing power - ITworld - May 22nd, 2017
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED - May 18th, 2017
- Molecular magnets closer to application in quantum computing - Next Big Future - May 15th, 2017
- Inside Microsoft's 'soup to nuts' quantum computing ramp-up - Computerworld Australia - April 29th, 2017
- Quantum computing is about to disrupt the government contracts market - Bloomberg Government (blog) - April 22nd, 2017
- Scientists: We Have Detected the Existence of a Fundamentally New State of Matter - Futurism - April 22nd, 2017
- What Sorts Of Problems Are Quantum Computers Good For? - Forbes - April 22nd, 2017
- quantum computing - WIRED UK - April 22nd, 2017
- What is Quantum Computing? Webopedia Definition - March 18th, 2017
- Here Is Everything You Need to Know About Quantum Computers - Interesting Engineering - March 18th, 2017
- Quantum Computing Market Forecast 2017-2022 | Market ... - March 18th, 2017
- Mathematician breaks down how to defend against quantum ... - Phys.Org - February 28th, 2017

## Recent Comments