University of Sydney and Microsoft collaborators in front of Station Q’s dilution fridge (University of Sydney)

Microsofts Station Q quantum computing lab at the University of Sydney is set to embark on a new chapter in its research, moving to scale up its next generation of quantum-engineered devices.

The devices in question will form the heart of what the Microsoft-backed lab claims is the first practical topological quantum computers.

By now, the idea behind quantum computing is fairly well established. Unlike classical computing, which uses digital bits as binary switches to carry out calculations, quantum computing makes use of the unusual properties of subatomic quantum bits or qubits to perform calculations.

A topological quantum computer employs qubits using subatomic particles called Majorana fermions, a particle that is also its own antiparticle, will have their information encoded through their topology, or geometry.

The first generation of quantum bits suffers from interference from electromagnetic noise. This means they lack robustness and are proving very difficult to scale up to a fault-tolerant, universal quantum computer.

It has long been theorised that Majorana fermions could help scientists to build more robust quantum computers. Indeed, Station Q researchers suggest that by braiding the Majoranas, quantum information is encoded in a way that is highly resistant to interference.

As it turns out, a new study by Dr Maja Cassidy, who is based at the University of Sydneys Station Q lab, has confirmed one of the prerequisites for building these devices.

Now, researchers at Sydneys Station Q lab are set to build the next generation of devices that will use Majorana fermions as the basis for quantum computers.

In preparation, Station Q will move scientific equipment into the universitys Nanoscience Hub clean rooms over the next few months as it increases capacity to develop quantum machines.

Cassidy said that building such quantum devices is a bit like going on a detective hunt.

When Majorana fermions were first shown to exist in 2012, there were many who said there could be other explanations for the findings, she said.

The challenge to show that the latest findings were caused by Majoranas was put to a research team led by Professor Leo Kouwenhoven, who now leads Microsofts Station Q lab in the Netherlands.

The new research paper, published on 7 September, meets an essential part of that challenge.

In essence, the research aims to prove that electrons on a one-dimensional semiconducting nanowire will have a quantum spin opposite to its momentum in a finite magnetic field.

This information is consistent with previous reports observing Majorana fermions in these nanowires, Cassidy said.

Cassidy conducted the research while at the Technical University Delft in the Netherlands, where she held a post-doctorate position.

She has since returned to Australia and is based at the University of Sydney Station Q partnership with Microsoft.

For University of Sydney Professor and Station Q Sydney director, David Reilly, the Majorana fermion work being undertaken by Cassidy and Australian lab is practical science at the cutting-edge.

We have hired Dr Cassidy because her ability to fabricate next-generation quantum devices is second to none, Reilly said.

The new research comes just over a month after Microsoft revealed it had gone all in on its quantum computing research partnership with the University of Sydney, striking a multi-year global agreement with the institution.

The deal sees Microsoft commit to a new, long-term phase of its investment at the university, with the funding expected to result in state-of-the-art equipment, see the recruitment of new staff, help build out the nations scientific and engineering talent, and focus research project funding into the university.

In April, Microsoft revealed it would double the size of the lab, in a move expected to see at least 20 additional researchers come on board.

Quantum computing has largely been relegated to the realm of research by the likes of Station Q and other such university-affiliated labs.

However, in August, the University of NSW (UNSW) made a move to commercialise its quantum computing technology with the launch of what is being touted as Australias first quantum computing company.

The $83 million venture, from which the new company, Silicon Quantum Computing Pty Ltd, emerged, has received backing from UNSW itself, which has contributed $25 million, as well as the Commonwealth Bank of Australia and Telstra, which are contributing $14 million and $10 million, respectively.

The creation of the company is intended to help drive the development and commercialisation of a 10-qubit quantum integrated circuit prototype in silicon by 2022, as the forerunner to a silicon-based quantum computer.

The company will work alongside the Australian Research Council (ARC) Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), operating from new laboratories within the Centres UNSW headquarters.

Error: Please check your email address.

Tags Station QSydneyresearchMicrosoftQuantum computing

View original post here:

Microsoft’s Aussie quantum computing lab set to scale up next-gen … – ARNnet

- Intel Takes First Steps To Universal Quantum Computing - October 13th, 2017
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - October 13th, 2017
- quantum computing - engadget.com - October 13th, 2017
- Quantum Computing | Intel Newsroom - October 13th, 2017
- What will you actually use quantum computing for? | ZDNet - October 11th, 2017
- Here's what quantum computing is and why it matters - October 6th, 2017
- Microsoft just upped its multi-million bet on quantum computing - ZDNet - September 7th, 2017
- An Entirely New Type of Quantum Computing Has Just Been Invented - Futurism - September 7th, 2017
- Quantum computing event explores the implications for business - Cambridge Network - August 30th, 2017
- Quantum Computing Is Coming at Us Fast, So Here's Everything You Need to Know - ScienceAlert - August 27th, 2017
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle - August 25th, 2017
- Commonwealth Bank investing in Australia's first quantum computer company - Which-50 (blog) - August 25th, 2017
- How quantum mechanics can change computing - The Conversation US - August 23rd, 2017
- Introducing Australia's first quantum computing hardware company - Computerworld Australia - August 23rd, 2017
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC - August 23rd, 2017
- $495.3 Million Quantum Computing Market 2017 by Revenue Source, Application, Industry, and Geography - Global ... - PR Newswire (press release) - August 18th, 2017
- Physicists Have Made Exotic Quantum States From Light - Futurism - August 16th, 2017
- Machine learning tackles quantum error correction - Phys.Org - August 15th, 2017
- Quantum Internet Is 13 Years Away. Wait, What's Quantum Internet? - WIRED - August 15th, 2017
- Blind quantum computing for everyone - Phys.org - Phys.Org - August 12th, 2017
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED - August 12th, 2017
- Quantum Computing Market Worth 495.3 Million USD by 2023 | 08 ... - Markets Insider - August 10th, 2017
- China uses a quantum satellite to transmit potentially unhackable data - CNBC - August 10th, 2017
- Physicists Take Big Step Towards Quantum Computing and ... - Universe Today - August 1st, 2017
- Why you might trust a quantum computer with secretseven over ... - Phys.Org - July 12th, 2017
- Quantum-computer node uses two different ion species - physicsworld.com - July 10th, 2017
- Quantum Computers vs Bitcoin How Worried Should We Be? - The Merkle - July 10th, 2017
- Quantum cheques could be a forgery-free way to move money - New Scientist - July 10th, 2017
- Technique for measuring and controlling electron state is a ... - UCLA Newsroom - July 9th, 2017
- Quantum Computers Made Even More Powerful with New microchip generating 'Qudits' - TrendinTech - July 8th, 2017
- Quantum Computing Record Broken - Wall Street Pit - July 8th, 2017
- Alkermes and IBM's quantum computing. Who'll be the big winner? Malcolm Berko - Durham Herald Sun - July 6th, 2017
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum - July 1st, 2017
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think - July 1st, 2017
- Quantum Computing Becomes More Accessible - Scientific American - July 1st, 2017
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design - June 2nd, 2017
- Toward mass-producible quantum computers | MIT News - MIT News - June 2nd, 2017
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA - June 2nd, 2017
- IBM boosts power of quantum computing processors as it lays ... - www.computing.co.uk - May 22nd, 2017
- IBM makes leap in quantum computing power - ITworld - May 22nd, 2017
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED - May 18th, 2017
- Molecular magnets closer to application in quantum computing - Next Big Future - May 15th, 2017
- Inside Microsoft's 'soup to nuts' quantum computing ramp-up - Computerworld Australia - April 29th, 2017
- Quantum computing is about to disrupt the government contracts market - Bloomberg Government (blog) - April 22nd, 2017
- Scientists: We Have Detected the Existence of a Fundamentally New State of Matter - Futurism - April 22nd, 2017
- What Sorts Of Problems Are Quantum Computers Good For? - Forbes - April 22nd, 2017
- quantum computing - WIRED UK - April 22nd, 2017
- What is Quantum Computing? Webopedia Definition - March 18th, 2017
- Here Is Everything You Need to Know About Quantum Computers - Interesting Engineering - March 18th, 2017
- Quantum Computing Market Forecast 2017-2022 | Market ... - March 18th, 2017
- Mathematician breaks down how to defend against quantum ... - Phys.Org - February 28th, 2017

## Recent Comments