Mathematician breaks down how to defend against quantum … – Phys.Org

February 28, 2017 Credit: CC0 Public Domain

The encryption codes that safeguard internet data today won’t be secure forever.

Future quantum computers may have the processing power and algorithms to crack them.

Nathan Hamlin, instructor and director of the WSU Math Learning Center, is helping to prepare for this eventuality.

He is the author of a new paper in the Open Journal of Discrete Mathematics that explains how a code he wrote for a doctoral thesis, the Generalized Knapsack Code, could thwart hackers armed with next generation quantum computers.

The paper clarifies misunderstandings about the complex field of public key cryptography and provides a common basis of understanding for the technical experts who will eventually be tasked with designing new internet security systems for the quantum computing age.

“Designing security systems to protect data involves experts from many different fields who all work with numbers differently,” Hamlin said. “You are going to have pure and applied mathematicians, computer programmers and engineers all involved in the process at some point. For it to work in real life, all of these people need to have a common language to communicate so that they can make important decisions about how to safeguard online transactions and personal communications in the future.”

Preparing for the future

Quantum computers operate on the subatomic level and theoretically provide processing power that is millions, if not billions of time faster than silicon-based computers. A hacker armed with a next generation quantum computer could in theory decrypt any internet communication that was sent today, Hamlin said.

In order to create an online security system better prepared for future demands, Hamlin and retired mathematics professor William Webb created the Generalized Knapsack Code in 2015 by retrofitting a previous version of the code with alternative number representations that go beyond the standard binary and base 10 sequences today’s computer use to operate.

In his paper, Hamlin breaks down how the generalized knapsack code works in terms that computer scientists, engineers and other experts outside the field of pure mathematics can understand. He explains that by disguising data with number strings more complex than the 0s and 1s conventional computers use to operate, the generalized knapsack offers a viable security method for defending against quantum computing hacks.

“The Generalized Knapsack Code expands upon the binary representations today’s computers use to operate by using a variety of representations other than 0s and 1,” Hamlin said. “This lets it block a greater array of cyberattacks, including those using basis reduction, one of the decoding methods used to break the original knapsack code.”

Hamlin said his hope is that his paper, Number in Mathematical Cryptography, clears up misunderstandings he has run into professionally so that the generalized knapsack code can be developed for future use.

“Quantum computing will change how we handle data and we, as a society, are going to have to make some important decisions about how to prepare for it,” Hamlin said. “A code like this can be implemented on conventional hardware and yet it would also be secure from a hacker with a quantum computer. I think it is time for us to consider this code very seriously for adapting commerce and perhaps communication in light of the possibility of quantum computing.”

Explore further: Quantum compute thisMathematicians build code to take on toughest of cyber attacks

More information: Nathan Hamlin, Number in Mathematical Cryptography, Open Journal of Discrete Mathematics (2017). DOI: 10.4236/ojdm.2017.71003

Washington State University mathematicians have designed an encryption code capable of fending off the phenomenal hacking power of a quantum computer.

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

When future users of quantum computers need to analyze their data or run quantum algorithms, they will often have to send encrypted information to the computer.

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

For the powerful quantum computers that will be developed in the future, cracking online bank account details and credit cards number will be a cinch.

(Tech Xplore)There are conventional computers and then there is another kindquantum computers, different, designed to leverage aspects of quantum physics to solve certain sorts of problems dramatically faster than …

The encryption codes that safeguard internet data today won’t be secure forever.

Pennsylvania’s congressional district maps are almost certainly the result of gerrymandering according to an analysis based on a new mathematical theorem on bias in Markov Chains developed by Carnegie Mellon University and …

A chicken-sized, feathered dinosaur that scuttled around Earth 160 million years ago is helping flesh out the missing link between land-bound animals and flying ones, scientists said Tuesday.

For all the fact-checking and objective reporting produced by major media outlets, voters in the U.S. nonetheless rely heavily on their pre-existing views when deciding if politicians’ statements are true or not, according …

Human activity, whether commercial or social, contains patterns and moments of synchronicity. In recent years, social media like Twitter has provided an unprecedented volume of data on the daily activities of humans all over …

(Phys.org)Stephen Brusatte, a fellow in Vertebrate Paleontology at the University of Edinburgh in the U.K. has published a Perspective piece in the journal Science outlining the state of current research into the development …

Adjust slider to filter visible comments by rank

Display comments: newest first

CIA &/or KGB have quantum computers for decades now. Security is a lovely myth, like democracy.

Knapsack code is something I’ve been meaning to look at for a while now. I’ll be giving this open access paper a careful look.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the rest here:

Mathematician breaks down how to defend against quantum … – Phys.Org

Related Post

Comments are closed.