A quantum computer is a computer design which uses the principles of quantum physics to increase the computational power beyond what is attainable by a traditional computer. Quantum computers have been built on the small scale and work continues to upgrade them to more practical models.

Computers function by storing data in a binary number format, which result in a series of 1s & 0s retained in electronic components such as transistors.

Each component of computer memory is called a bit and can be manipulated through the steps of Boolean logic so that the bits change, based upon the algorithms applied by the computer program, between the 1 and 0 modes (sometimes referred to as “on” and “off”).

A quantum computer, on the other hand, would store information as either a 1, 0, or a quantum superposition of the two states. Such a “quantum bit” allows for far greater flexibility than the binary system.

Specifically, a quantum computer would be able to perform calculations on a far greater order of magnitude than traditional computers … a concept which has serious concerns and applications in the realm of cryptography & encryption. Some fear that a successful & practical quantum computer would devastate the world’s financial system by ripping through their computer security encryptions, which are based on factoring large numbers that literally cannot be cracked by traditional computers within the lifespan of the universe.

A quantum computer, on the other hand, could factor the numbers in a reasonable period of time.

To understand how this speeds things up, consider this example. If the qubit is in a superposition of the 1 state and the 0 state, and it performed a calculation with another qubit in the same superposition, then one calculation actually obtains 4 results: a 1/1 result, a 1/0 result, a 0/1 result, and a 0/0 result.

This is a result of the mathematics applied to a quantum system when in a state of decoherence, which lasts while it is in a superposition of states until it collapses down into one state. The ability of a quantum computer to perform multiple computations simultaneously (or in parallel, in computer terms) is called quantum parallelism).

The exact physical mechanism at work within the quantum computer is somewhat theoretically complex and intuitively disturbing. Generally, it is explained in terms of the multi-world interpretation of quantum physics, wherein the computer performs calculations not only in our universe but also in other universes simultaneously, while the various qubits are in a state of quantum decoherence. (While this sounds far-fetched, the multi-world interpretation has been shown to make predictions which match experimental results. Other physicists have )

Quantum computing tends to trace its roots back to a 1959 speech by Richard P. Feynman in which he spoke about the effects of miniaturization, including the idea of exploiting quantum effects to create more powerful computers. (This speech is also generally considered the starting point of nanotechnology.)

Of course, before the quantum effects of computing could be realized, scientists and engineers had to more fully develop the technology of traditional computers. This is why, for many years, there was little direct progress, nor even interest, in the idea of making Feynman’s suggestions into reality.

In 1985, the idea of “quantum logic gates” was put forth by University of Oxford’s David Deutsch, as a means of harnessing the quantum realm inside a computer. In fact, Deutsch’s paper on the subject showed that any physical process could be modeled by a quantum computer.

Nearly a decade later, in 1994, AT&T’s Peter Shor devised an algorithm that could use only 6 qubits to perform some basic factorizations … more cubits the more complex the numbers requiring factorization became, of course.

A handful of quantum computers has been built.

The first, a 2-qubit quantum computer in 1998, could perform trivial calculations before losing decoherence after a few nanoseconds. In 2000, teams successfully built both a 4-qubit and a 7-qubit quantum computer. Research on the subject is still very active, although some physicists and engineers express concerns over the difficulties involved in upscaling these experiments to full-scale computing systems. Still, the success of these initial steps does show that the fundamental theory is sound.

The quantum computer’s main drawback is the same as its strength: quantum decoherence. The qubit calculations are performed while the quantum wave function is in a state of superposition between states, which is what allows it to perform the calculations using both 1 & 0 states simultaneously.

However, when a measurement of any type is made to a quantum system, decoherence breaks down and the wave function collapses into a single state. Therefore, the computer has to somehow continue making these calculations without having any measurements made until the proper time, when it can then drop out of the quantum state, have a measurement taken to read its result, which then gets passed on to the rest of the system.

The physical requirements of manipulating a system on this scale are considerable, touching on the realms of superconductors, nanotechnology, and quantum electronics, as well as others. Each of these is itself a sophisticated field which is still being fully developed, so trying to merge them all together into a functional quantum computer is a task which I don’t particularly envy anyone …

except for the person who finally succeeds.

Continue reading here:

How Quantum Computers Work

- For a Split Second, a Quantum Computer Made History Go ... - May 13th, 2019
- Noisy Quantum Computers Could Be Good for Chemistry Problems ... - April 11th, 2019
- What is a Quantum Computer? - Definition from Techopedia - April 11th, 2019
- What Is a Quantum Computer? | JSTOR Daily - April 11th, 2019
- Measuring Quantum Computer Power With IBM Quantum Volume ... - April 9th, 2019
- Explainer: What is a quantum computer ... - March 24th, 2019
- What Can We Do with a Quantum Computer? | Institute for ... - March 7th, 2019
- Qubit - Wikipedia - February 25th, 2019
- Quantum computer | computer science | Britannica.com - January 10th, 2019
- IBMs new quantum computer is a symbol, not a breakthrough - January 9th, 2019
- IBM unveils the world's first quantum computer that ... - January 9th, 2019
- Were Close to a Universal Quantum Computer, Heres Where We're At - November 28th, 2018
- Schrdinger's Killer App: Race to Build the World's First ... - August 7th, 2018
- This is what a 50-qubit quantum computer looks like - January 15th, 2018
- Inside Microsofts quantum computing world | InfoWorld - January 1st, 2018
- Microsoft Takes Path Less Traveled to Build a Quantum ... - December 13th, 2017
- Researchers create new type of quantum computer | Harvard Gazette - December 12th, 2017
- Microsoft releases quantum computing development kit preview ... - December 12th, 2017
- Intel moves towards production quantum computing with new 17 ... - October 11th, 2017
- Quantum computer a possibility in 10 years - News.com.au - NEWS.com.au - September 7th, 2017
- Scientists Propose a New Kind of Quantum Computer, But What ... - Gizmodo - September 7th, 2017
- Quantum detectives in the hunt for the world's first quantum computer - Phys.Org - September 7th, 2017
- Scientists Just Found A Use For The Hashtag In Quantum Computing - Gizmodo Australia - September 4th, 2017
- The Future of AI: From Quantum Computing to the Internet of Things - Outer Places - September 4th, 2017
- We're About to Cross The 'Quantum Supremacy' Limit in Computing - ScienceAlert - September 2nd, 2017
- Explaining the Most Recent Record for Quantum Computing: A 51-Qubit Quantum Computer Array - All About Circuits - September 2nd, 2017
- USRA Upgrades D-Wave Quantum Computer to 2000 Qubits - insideHPC - September 1st, 2017
- Quantum encrypted box hints at unhackable communication - Wired.co.uk - September 1st, 2017
- Quantum Computer Programming: What You Need to Learn to Get ... - TrendinTech - September 1st, 2017
- Google's John Martinis Believes Quantum Computing Threat to Be Long Way Off - Bitcoin News (press release) - August 31st, 2017
- Australian quantum computing outfit goes commercial - Networks Asia - August 31st, 2017
- Elusive Majorana Particle Takes Major Step Towards Quantum Computing - IEEE Spectrum - August 29th, 2017
- Australia gets quantum computing company - ACS (registration) - August 28th, 2017
- Quantum Computing and Financial Trading - LeapRate - August 28th, 2017
- Russians Lead the Quantum Computer Race With 51-Qubit Machine - Edgy Labs (blog) - August 28th, 2017
- Bitcoin vs. The NSAs Quantum Computer Bitcoin Not Bombs - August 26th, 2017
- qBitcoin: A Way of Making Bitcoin Quantum-Computer Proof? - IEEE Spectrum - August 26th, 2017
- Hype and cash are muddying public understanding of quantum ... - Phys.Org - August 26th, 2017
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet - August 23rd, 2017
- IEEE Approves Standards Project for Quantum Computing ... - Business Wire (press release) - August 23rd, 2017
- Introducing Australia's first quantum computing hardware company - CIO Australia - August 23rd, 2017
- What is quantum computer? - Definition from WhatIs.com - August 22nd, 2017
- Hype and cash are muddying public understanding of quantum computing - The Conversation AU - August 22nd, 2017
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet - August 22nd, 2017
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review - August 22nd, 2017
- 'Tools of DESTRUCTION' Quantum computers WILL wreak havoc ... - Express.co.uk - August 19th, 2017
- Quantum computing comes of age - Alphr - August 14th, 2017
- No, Quantum Teleportation Won't Let Us Send Instant Messages to Alpha Centauri - Air & Space Magazine - August 12th, 2017
- Google on track for quantum computer breakthrough by end of ... - August 11th, 2017
- Closing In On Quantum Computing | WIRED - August 11th, 2017
- World's Leading Physicist Says Quantum Computers Are Tools of Destruction, Not Creation - Futurism - August 10th, 2017
- Will you be able to trust a quantum computer? - Digital Journal - August 9th, 2017
- New Methods of Controlling Electrons Could be Major in Quantum Computing - TrendinTech - August 5th, 2017
- Exactly what could quantum computers do? - Electronics Weekly - August 4th, 2017
- What is quantum computing and why does the future of Earth depend on it? - Alphr - August 2nd, 2017
- The Age of Quantum Computers is upon us! - Gizbot - August 2nd, 2017
- Ultracold molecules hold promise for quantum computing | MIT News - MIT News - August 1st, 2017
- Clarifiying complex chemical processes with quantum computers - Phys.Org - August 1st, 2017
- When Will Quantum Computers Be Consumer Products? - Futurism - August 1st, 2017
- Quantum Computers Just Moved a Step Closer to Reality - NBCNews.com - August 1st, 2017
- A New Breakthrough in Quantum Computing is Set to Transform Our ... - Futurism - August 1st, 2017
- Quantum computers compete for supremacy - Salon - July 10th, 2017
- Quantum Computers Compete for "Supremacy" - Scientific American - July 5th, 2017
- Less is more for Canadian quantum computing researchers - ITworld - July 4th, 2017
- New method could enable more stable and scalable quantum ... - Phys.Org - July 4th, 2017
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) - July 2nd, 2017
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub - July 1st, 2017
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech - June 20th, 2017
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International - June 20th, 2017
- Prototype device enables photon-photon interactions at room ... - Phys.Org - June 20th, 2017
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED - June 20th, 2017
- Toward optical quantum computing - MIT News - June 17th, 2017
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers - June 16th, 2017
- KPN CISO details Quantum computing attack dangers - Mobile World Live - June 16th, 2017
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) - June 14th, 2017
- From the Abacus to Supercomputers to Quantum Computers - Duke Today - June 13th, 2017
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub - June 13th, 2017
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge - June 13th, 2017
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism - June 13th, 2017
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future - June 13th, 2017

## Recent Comments