Category Archives: Quantum Computing

China bet big on quantum computing. Now the US races to …

The US House of Representatives unanimously passed a bill Thursday to help it match China in quantum computing capabilities. Quantum computers promise to be orders of magnitude faster than the traditional computers we use today.

The bill was passed shortly after the Center for New American Security, a Washington, DC-based think tank of former Pentagon officials, warned in a new report China’s focus on quantum technologies could help it to surpass the United States military.

Traditional computers store data as a binary digit, like a light switch that’s on or off. Quantum computing relies on qubits, which can be in many positions at once.

This creates new possibilities for more powerful computers, and quantum advocates speak excitedly of new options such as more secure communications and improved cancer treatments.

“Quantum may be the compute technology of the next 100 years,” Jim Clarke, the director of quantum hardware at Intel told CNNMoney earlier this year. “This is something like a space race, it comes around once in a generation.”

Intel, Google and IBM are among several American companies that are developing quantum technologies. But China stands out globally for its energy and investments.

“They have a quantum satellite no one else has done, a communications network no one else has done, and workforce development program to bring new Chinese quantum engineers online,” said Paul Stimers, founder of Quantum Industry Coalition, which lobbies on behalf of the American makers of quantum technologies. “You start to say, that’s worrisome.”

US stealth technology, a long-running military edge, could become obsolete due to quantum technologies, the Center for New American Security researchers caution. It could also become hard to keep an eye on China, and more difficult to guard sensitive US information.

For the first time in recent history, the United States faces the danger of being surprised by technologies another country possesses, Elsa Kania, one of the report’s authors, told CNNMoney. But predicting how powerful quantum technologies will become, and how fast they will do so is difficult, she added.

Congress isn’t alone in embracing quantum computing. In June, the White House announced a new subcommittee in the National Science and Technology Council to coordinate quantum information science research and development.

There’s significant hype in the quantum computing industry, and reasons to be overly concerned with possible dangers. A world-changing quantum computer is likely 10 years away, according to Clarke. Today, there are no guarantees quantum technologies will succeed. Qubits fail a lot, and they need to be kept at extremely cold temperatures a fraction of a degree above absolute zero.

China has launched a quantum satellite, but its abilities are extremely limited when compared with the superpowers quantum advocates expect the technology will one day perform.

“The satellite is absolutely useless in terms of doing anything right now, but it demonstrates a capability right now that’s fairly impressive,” Stimers said.

Read the original here:
China bet big on quantum computing. Now the US races to …

China bet big on quantum computing. Now the … – money.cnn.com

The US House of Representatives unanimously passed a bill Thursday to help it match China in quantum computing capabilities. Quantum computers promise to be orders of magnitude faster than the traditional computers we use today.

The bill was passed shortly after the Center for New American Security, a Washington, DC-based think tank of former Pentagon officials, warned in a new report China’s focus on quantum technologies could help it to surpass the United States military.

Traditional computers store data as a binary digit, like a light switch that’s on or off. Quantum computing relies on qubits, which can be in many positions at once.

This creates new possibilities for more powerful computers, and quantum advocates speak excitedly of new options such as more secure communications and improved cancer treatments.

“Quantum may be the compute technology of the next 100 years,” Jim Clarke, the director of quantum hardware at Intel told CNNMoney earlier this year. “This is something like a space race, it comes around once in a generation.”

Related: China leads the world in drones. US companies want to change that.

Intel, Google and IBM are among several American companies that are developing quantum technologies. But China stands out globally for its energy and investments.

“They have a quantum satellite no one else has done, a communications network no one else has done, and workforce development program to bring new Chinese quantum engineers online,” said Paul Stimers, founder of Quantum Industry Coalition, which lobbies on behalf of the American makers of quantum technologies. “You start to say, that’s worrisome.”

US stealth technology, a long-running military edge, could become obsolete due to quantum technologies, the Center for New American Security researchers caution. It could also become hard to keep an eye on China, and more difficult to guard sensitive US information.

For the first time in recent history, the United States faces the danger of being surprised by technologies another country possesses, Elsa Kania, one of the report’s authors, told CNNMoney. But predicting how powerful quantum technologies will become, and how fast they will do so is difficult, she added.

Congress isn’t alone in embracing quantum computing. In June, the White House announced a new subcommittee in the National Science and Technology Council to coordinate quantum information science research and development.

There’s significant hype in the quantum computing industry, and reasons to be overly concerned with possible dangers. A world-changing quantum computer is likely 10 years away, according to Clarke. Today, there are no guarantees quantum technologies will succeed. Qubits fail a lot, and they need to be kept at extremely cold temperatures a fraction of a degree above absolute zero.

China has launched a quantum satellite, but its abilities are extremely limited when compared with the superpowers quantum advocates expect the technology will one day perform.

“The satellite is absolutely useless in terms of doing anything right now, but it demonstrates a capability right now that’s fairly impressive,” Stimers said.

CNNMoney (Washington) First published September 14, 2018: 4:30 PM ET

Go here to see the original:
China bet big on quantum computing. Now the … – money.cnn.com

US takes first step toward a quantum computing workforce …

Quantum computers promise to transform computer security, finance, and many other fields by solving certain problems far faster than conventional machines. To unlock that potential, the US government has just passed a bill to foster a viable quantum computing industry.

Christopher Monroe ofthe University of Maryland told the audience at EmTech, a conference organized by MIT Technology Review, that the US needs a new generation of engineers, schooled in the quirks of quantum physics as well as the principles of computer engineering, to help create quantum computers that can tackle real-world problems.

That is why Monroe helped draft the National Quantum Initiative Act, a bill just passed today that would establish a federal program for accelerating research and training in quantum computing. The act will release $1.275 billion to help fund several centers of excellence that should help train many quantum engineers.

Monroe is also the cofounder of IonQ, one of several startups now racing to develop usable quantum computers. It is hard for these companies to find engineers to help them develop and commercialize scalable systems. We need quantum systems engineers, Monroe said. We need that workforce.

Quantum computers operate in a totally different wayfrom conventional machines.In an ordinary computer, bits of information are represented using either a 1 or a 0. But in the quantum realm, matter behaves in bizarre ways. Quantum bits, or qubits, created and manipulated using superposition and entanglement, can perform certain types of calculation very rapidly on vast amounts of data.

In theory, a quantum machine with just a few hundred qubits should be able to run calculations that would be inconceivable using traditional hardware.

In practice, though, it is devilishly tricky to scale these systems up, because they are terribly sensitive to interference. Quantum computers were first proposed decades ago, but research on the technology has progressed at a glacial pace.

Startups and big tech companies are currently racing to develop more powerful quantum computers. IonQ is building its computers using ions trapped with electric fields. Several others, including Google, IBM, and Rigetti, are developing quantum computers using superconducting circuits. Rigetti recently demonstrated a new quantum cloud service (see Running quantum algorithms in the cloud just got a lot faster).

Monroe said the new national plan should also help the US compete internationally. China is pouring billions of dollars into its own quantum computing projects. The international picture is especially significant because these technologies promise to be useful for breakingbut also securingcommunications channels.

Within five years, quantum computers would be capable of calculations that could never be run using conventional hardware, Monroe predicts. But it remains unclear precisely how useful theseearlysystems will be, since they will only be capable of certain types of computation.

Figuring out how to use these machines will then be up to the quantum software engineers. When we build them, they will be useful for something, Monroe said.

Continue reading here:
US takes first step toward a quantum computing workforce …

The reality of quantum computing could be just three years …

Quantum computing has moved out of the realm of theoretical physics and into the real world, but its potential and promise are still years away.

Onstage at TechCrunch Disrupt SF, a powerhouse in the world of quantum research and a young upstart in the field presented visions for the future of the industry that illustrated both how far the industry has come and how far the technology has to go.

For both Dario Gil, the chief operating officer of IBM Research and the companys vice president of artificial intelligence and quantum computing, and Chad Rigetti, a former IBM researcher who founded Rigetti Computing and serves as its chief executive, the moment that a quantum computer will be able to perform operations better than a classical computer is only three years away.

[Its] generating a solution that is better, faster or cheaper than you can do otherwise, said Rigetti.Quantum computing has moved out of a field of research into now an engineering discipline and an engineering enterprise.

Considering the more than 30 years that IBM has been researching the technology and the millions (or billions) that have been poured into developing it, even seeing an end of the road is a victory for researchers and technologists.

Achieving this goal, for all of the brainpower and research hours that have gone into it, is hardly academic.

The Chinese government is building a $10 billion National Laboratory for Quantum Information in Anhui province, which borders Shanghai and is slated to open in 2020. Meanwhile, the U.S. public research into quantum computing is running at around $200 million per year.

One of the reasons why governments, especially, are so interested in the technology is its potential to completely remake the cybersecurity landscape. Some technologists argue that quantum computers will have the potential to crack any type of encryption technology, opening up all of the networks in the world to potential hacking.

Of course, quantum computing is so much more than security. It will enable new ways of doing things we cant even imagine because we have never had this much pure compute power. Think about artificial and machine learning or drug development; any type of operation that is compute-intensive could benefit from the exponential increase in compute power that quantum computing will bring.

Security may be the Holy Grail for governments, but both Rigetti and Gil say that the industrial chemical business will be the first place where the potentially radical transformation of a market will appear first.

To understand quantum computing it helps to understand the principles of the physics behind it.

As Gil explained onstage (and on our site), quantum computing depends on the principles of superposition, entanglement and interference.

Superposition is the notion that physicists can observe multiple potential states of a particle. If you a flip a coin it is one or two states, said Gil. Meaning that theres a single outcome that can be observed. But if someone were to spin a coin, theyd see a number of potential outcomes.

Once youve got one particle thats being observed, you can add another and pair them thanks to a phenomenon called quantum entanglement. If you have two coins where each one can be in superpositions and then you can have measurements can be taken of the difference of both.

Finally, theres interference, where the two particles can be manipulated by an outside force to change them and create different outcomes.

In classical systems you have these bits of zeros and ones and the logical operations of the ands and the ors and the nots, said Gil. The classical computer is able to process the logical operations of bits expressed in zeros and ones.

In an algorithm you put the computer in a super positional state, Gil continued. You can take the amplitude and states and interfere them and the algorithm is the thing that interferes I can have many, many states representing different pieces of information and then i can interfere with it to get these data.

These operations are incredibly hard to sustain. In the early days of research into quantum computing the superconducting devices only had one nanosecond before a qubit transforms into a traditional bit of data. Those ranges have increased between 50 and 100 microseconds, which enabled IBM and Rigetti to open up their platforms to researchers and others to conduct experimentation (more on that later).

As one can imagine, dealing with quantum particles is a delicate business. So the computing operations have to be carefully controlled.At the base of the machine is what basically amounts to a huge freezer that maintains a temperature in the device of 15 millikelvin near absolute zero degrees and 180 times colder than the temperatures in interstellar space.

These qubits are very delicate, said Gil. Anything from the outside world can couple to it and destroy its state and one way to protect it is to cool it.

Wiring for the quantum computer is made of superconducting coaxial cables. The inputs to the computers are microwave pulses that manipulates the particles creating a signal that is then interpreted by the computers operators.

Those operators used to require a degree in quantum physics. But both IBM and Rigetti have been working on developing tools that can enable a relative newbie to use the tech.

Even as companies like IBM and Rigetti bring the cost of quantum computing down from tens of millions of dollars to roughly $1 million to $2 million, these tools likely will never become commodity hardware that a consumer buys to use as a personal computer.

Rather, as with most other computing these days, quantum computing power will be provided as a service to users.

Indeed, Rigetti announced onstage a new hybrid computing platform that can provide computing services to help the industry both reach quantum advantage that tipping point at which quantum is commercially viable and to enable industries to explore the technologies to acclimatize to the potential ways in which typical operations could be disrupted by it.

A user logs on to their own device and use our software development kit to write a quantum application, said Rigetti. That program is sent to a compiler and kicks off an optimization kit that runs on a quantum and classical computer This is the architecture thats needed to achieve quantum advantage.

Both IBM and Rigetti and a slew of other competitors are preparing users for accessing quantum computing opportunities on the cloud.

IBM has more than a million chips performing millions of quantum operations requested by users in over 100 countries around the world.

In a cloud-first era Im not sure the economic forces will be there that will drive us to develop the miniaturized environment in the laptop, Rigetti said. But the ramifications of the technologys commercialization will be felt by everyone, everywhere.

Quantum computing is going to change the world and its all going to come in our lifetime, whether thats two years or five years, he said. Quantum computing is going to redefine every industry and touch every market. Every major company will be involved in some capacity in that space.

See the original post:
The reality of quantum computing could be just three years …

The quantum computing race the US cant afford to lose

Quantum computing has ushered in a new area of information technology. An international arms race to develop quantum computers has steadily grown more competitive and more critical.

China reached the early pole position by unveiling the worlds first quantum communication landline connecting Beijing with Shanghai like no two other cities in history. The first quantum encrypted Skype call was also made, that same day, by the Chinese. It was only possible because of the worlds first quantum satellite, known as Micius.

Visit Hard Fork.

Its clear that quantum technology promises to usher in a new era of computing. And other countries are already staking their claim, vying to be the nation that ultimately emerges as the world leader.

Beyond its image as a booster for communications, quantum computing also poses a very real threat to data protection with its proven ability to quickly crack most codes.

Only the lack of large scale quantum computers is holding back the ability to shred todays encryption. And both criminals and nation-states are capturing as much encrypted data as they can now, with the expectation that quantum computers will eventually be able to crack current protections.

China and other nations are investing heavily in research and development for quantum computers as well as technology that could, theoretically, prevent hacking by quantum supercomputers. If the United States fails to develop a similarly strong quantum infrastructure, all of todays protected data could be at risk.

This includes military data that would directly impact operational security (OPSEC), which is the critical communications in any military mission.

While OPSEC is one major potential vulnerability, other systems could be targeted. The financial and medical sectors come to mind. Both industries play pivotal roles in American life and have access to important data.

A sufficiently advanced quantum computer could theoretically decrypt and break into a mass of bank accounts or patient records in very little time.

Spending on technology across the board is projected to grow over the next few years as computing advances. The United States Department of Defense has requisitioned $899 million for computer science research. While this research focuses largely on quantum computing, the requested amount is only .000046% of the total gross domestic product (GDP).

Meanwhile, China is investing much more heavily in quantum computing. While their exact government spending is unknown, a new research laboratory costing approximately $10 billion was recently built in China for the express purpose of researching quantum technology.

The total amount being spent by the Chinese government dwarfs the investment by the United States, and that deficit does not appear to close over the next five to ten years.

In order to keep a secure infrastructure, the United States must prioritize the digital space. The digital theater is likely the next major area of operations as countries try to grab sensitive information.

A situation like this was mentioned in Tom Clancys excellently researched Threat Vector. In the book, the Chinese use superior technology to disrupt American businesses and pilfer sensitive documents. Its not unlike what could very well be happening right now in anticipation of quantum computing advances.

While Threat Vector is fiction, there are some harsh realities facing the United States should it fail to remain competitive in this critical area. Beyond the obvious theft of sensitive data and mission critical secrecy is the loss of jobs or potential jobs as quantum computing is developed and designed offshore.

For the United States to remain at the cutting edge, it will need to create its own quantum network to allow for unbreakable lines of secure communication, like what is happening in China.

We are also in vital need of quantum-proof encryption such as Quantum Key Distribution (QKD) that can be applied as soon as possible. Our most critical data needs to be safe from future quantum computers and their expected ability to more easily crack todays encryption.

American companies like Microsoft, Intel, Google, IBM,and others are conducting research and development into quantum technologies, but will likely require assistance from the government. After all, government backing has been at the root of most technical marvels of everyday life such as microchips, GPS, touch screens, Googles search engine and the Internet.

The biggest competitor within quantum computing is China, which is likely the worlds frontrunner, but there are others. Russia is also pushing the boundaries. Spearheaded by the Russian Quantum Center, Russia announced a breakthrough by designing a quantum computer that can reliably solve basic computations faster than anything else today.

Even North Korea has stated that they intend to develop quantum computers. While its unknown how much North Korea has invested in this program, the fact that they are tossing their hat in the ring is troubling.

The United States cant afford to come in second in the global quantum arms race, especially to any country that has been adversarial or downright antagonistic in the past.

In a quantum world, the speeds are so fast and the numbers so large, that second place really doesnt mean very much. There is the leader in quantum computing, and then there is everyone else.

The United States has an incredible ability to compete on the world stage in anything. The effort just needs the proper investment, manpower and directive. Quantum computing is a race where we can compete, and one that we absolutely must win.

Read next: Task Pigeon will get your whole office cranking out projects and now its 90% off

Read more:
The quantum computing race the US cant afford to lose

Quantum Computing | USRA

Feynman Quantum Computing Academy at NASA Ames

An experience in the USRA-NASA-Google Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Centers Advanced Supercomputing Facility introduces graduate students to scientific opportunities in quantum information sciences and trains them to do research related to the most advanced quantum computing platforms. Students will receive valuable experience working on teams, undertaking projects in advanced computing, and developing quantum and classical methods to solve problems in important application or fundamental domains.

Students, which need to be enrolled in a Ph.D. program or have otherwise previous quantum computing research experience, are accepted to a 12-to-24 week program. Applications are open all year round. These students work in close collaboration with quantum scientists, receiving hands-on training, and undertake individualized research projects. Students will also participate in seminars and workshops with researchers from other organizations doing quantum research, including those from academic institutions, government laboratories, and commercial organizations. Participants receive a stipend to cover living expenses and travel during the program.

David Bell, Ph.D. Director, USRA Research Institute for Advanced Computer Science (RIACS), and Chief Technologist, NASA Academic Mission Services

Davide Venturelli, Ph.D., Senior Quantum Information Scientist, USRA RIACS; and Science Operations Manager, Quantum Artificial Intelligence Laboratory

Read more here:
Quantum Computing | USRA

What Is Quantum Computing? The Complete WIRED Guide | WIRED

Big things happen when computers get smaller. Or faster. And quantum computing is about chasing perhaps the biggest performance boost in the history of technology. The basic idea is to smash some barriers that limit the speed of existing computers by harnessing the counterintuitive physics of subatomic scales.

If the tech industry pulls off that, ahem, quantum leap, you wont be getting a quantum computer for your pocket. Dont start saving for an iPhone Q. We could, however, see significant improvements in many areas of science and technology, such as longer-lasting batteries for electric cars or advances in chemistry that reshape industries or enable new medical treatments. Quantum computers wont be able to do everything faster than conventional computers, but on some tricky problems they have advantages that would enable astounding progress.

Its not productive (or polite) to ask people working on quantum computing when exactly those dreamy applications will become real. The only thing for sure is that they are still many years away. Prototype quantum computing hardware is still embryonic. But powerfuland, for tech companies, profit-increasingcomputers powered by quantum physics have recently started to feel less hypothetical.

The cooling and support structure for one of IBM’s quantum computing chips (the tiny black square at the bottom of the image).

Amy Lombard

Thats because Google, IBM, and others have decided its time to invest heavily in the technology, which, in turn, has helped quantum computing earn a bullet point on the corporate strategy PowerPoint slides of big companies in areas such as finance, like JPMorgan, and aerospace, like Airbus. In 2017, venture investors plowed $241 million into startups working on quantum computing hardware or software worldwide, according to CB Insights. Thats triple the amount in the previous year.

Like the befuddling math underpinning quantum computing, some of the expectations building around this still-impractical technology can make you lightheaded. If you squint out the window of a flight into SFO right now, you can see a haze of quantum hype drifting over Silicon Valley. But the enormous potential of quantum computing is undeniable, and the hardware needed to harness it is advancing fast. If there were ever a perfect time to bend your brain around quantum computing, its now. Say Schrodingers superposition three times fast, and we can dive in.

The prehistory of quantum computing begins early in the 20th century, when physicists began to sense they had lost their grip on reality.

First, accepted explanations of the subatomic world turned out to be incomplete. Electrons and other particles didnt just neatly carom around like Newtonian billiard balls, for example. Sometimes they acted like waves instead. Quantum mechanics emerged to explain such quirks, but introduced troubling questions of its own. To take just one brow-wrinkling example, this new math implied that physical properties of the subatomic world, like the position of an electron, didnt really exist until they were observed.

Physicist Paul Benioff suggests quantum mechanics could be used for computation.

Nobel-winning physicist Richard Feynman, at Caltech, coins the term quantum computer.

Physicist David Deutsch, at Oxford, maps out how a quantum computer would operate, a blueprint that underpins the nascent industry of today.

Mathematician Peter Shor, at Bell Labs, writes an algorithm that could tap a quantum computers power to break widely used forms of encryption.

D-Wave, a Canadian startup, announces a quantum computing chip it says can solve Sudoku puzzles, triggering years of debate over whether the companys technology really works.

Google teams up with NASA to fund a lab to try out D-Waves hardware.

Google hires the professor behind some of the best quantum computer hardware yet to lead its new quantum hardware lab.

IBM puts some of its prototype quantum processors on the internet for anyone to experiment with, saying programmers need to get ready to write quantum code.

Startup Rigetti opens its own quantum computer fabrication facility to build prototype hardware and compete with Google and IBM.

If you find that baffling, youre in good company. A year before winning a Nobel for his contributions to quantum theory, Caltechs Richard Feynman remarked that nobody understands quantum mechanics. The way we experience the world just isnt compatible. But some people grasped it well enough to redefine our understanding of the universe. And in the 1980s a few of themincluding Feynmanbegan to wonder if quantum phenomena like subatomic particles’ dont look and I dont exist trick could be used to process information. The basic theory or blueprint for quantum computers that took shape in the 80s and 90s still guides Google and others working on the technology.

Before we belly flop into the murky shallows of quantum computing 0.101, we should refresh our understanding of regular old computers. As you know, smartwatches, iPhones, and the worlds fastest supercomputer all basically do the same thing: they perform calculations by encoding information as digital bits, aka 0s and 1s. A computer might flip the voltage in a circuit on and off to represent 1s and 0s for example.

Quantum computers do calculations using bits, too. After all, we want them to plug into our existing data and computers. But quantum bits, or qubits, have unique and powerful properties that allow a group of them to do much more than an equivalent number of conventional bits.

Qubits can be built in various ways, but they all represent digital 0s and 1s using the quantum properties of something that can be controlled electronically. Popular examplesat least among a very select slice of humanityinclude superconducting circuits, or individual atoms levitated inside electromagnetic fields. The magic power of quantum computing is that this arrangement lets qubits do more than just flip between 0 and 1. Treat them right and they can flip into a mysterious extra mode called a superposition.

The looped cables connect the chip at the bottom of the structure to its control system.

Amy Lombard

You may have heard that a qubit in superposition is both 0 and 1 at the same time. Thats not quite true and also not quite falsetheres just no equivalent in Homo sapiens humdrum classical reality. If you have a yearning to truly grok it, you must make a mathematical odyssey WIRED cannot equip you for. But in the simplified and dare we say perfect world of this explainer, the important thing to know is that the math of a superposition describes the probability of discovering either a 0 or 1 when a qubit is read outan operation that crashes it out of a quantum superposition into classical reality. A quantum computer can use a collection of qubits in superpositions to play with different possible paths through a calculation. If done correctly, the pointers to incorrect paths cancel out, leaving the correct answer when the qubits are read out as 0s and 1s.

A device that uses quantum mechanical effects to represent 0s and 1s of digital data, similar to the bits in a conventional computer.

It’s the trick that makes quantum computers tick, and makes qubits more powerful than ordinary bits. A superposition is in an intuition-defying mathematical combination of both 0 and 1. Quantum algorithms can use a group of qubits in a superposition to shortcut through calculations.

A quantum effect so unintuitive that Einstein dubbed it spooky action at a distance. When two qubits in a superposition are entangled, certain operations on one have instant effects on the other, a process that helps quantum algorithms be more powerful than conventional ones.

The holy grail of quantum computinga measure of how much faster a quantum computer could crack a problem than a conventional computer could. Quantum computers arent well-suited to all kinds of problems, but for some they offer an exponential speedup, meaning their advantage over a conventional computer grows explosively with the size of the input problem.

For some problems that are very time consuming for conventional computers, this allows a quantum computer to find a solution in far fewer steps than a conventional computer would need. Grovers algorithm, a famous quantum search algorithm, could find you in a phone book with 100 million names with just 10,000 operations. A classical search algorithm would require 50 million operations, on average, to spool through all the listings and find you. For Grovers and some other quantum algorithms, the bigger the initial problemor phonebookthe further behind a conventional computer is left in the digital dust.

The reason we dont have useful quantum computers today is that qubits are extremely finicky. The quantum effects they must control are very delicate, and stray heat or noise can flip 0s and 1s, or wipe out a crucial superposition. Qubits have to be carefully shielded, and operated at very cold temperatures, sometimes only fractions of a degree above absolute zero. Most plans for quantum computing depend on using a sizable chunk of a quantum processors power to correct its own errors, caused by misfiring qubits.

Recent excitement about quantum computing stems from progress in making qubits less flaky. Thats giving researchers the confidence to start bundling the devices into larger groups. Startup Rigetti Computing recently announced it has built a processor with 128 qubits made with aluminum circuits that are super-cooled to make them superconducting. Google and IBM have announced their own chips with 72 and 50 qubits, respectively. Thats still far fewer than would be needed to do useful work with a quantum computerit would probably require at least thousandsbut as recently as 2016 those companies best chips had qubits only in the single digits. After tantalizing computer scientists for 30 years, practical quantum computing may not exactly be close, but it has begun to feel a lot closer.

Some large companies and governments have started treating quantum computing research like a raceperhaps fittingly its one where both the distance to the finish line and the prize for getting there are unknown.

Google, IBM, Intel, and Microsoft have all expanded their teams working on the technology, with a growing swarm of startups such as Rigetti in hot pursuit. China and the European Union have each launched new programs measured in the billions of dollars to stimulate quantum R&D. And in the US, the Trump White House has created a new committee to coordinate government work on quantum information science. Several bills were introduced to Congress in 2018 proposing new funding for quantum research, totalling upwards of $1.3 billion. Its not quite clear what the first killer apps of quantum computing will be, or when they will appear. But theres a sense that whoever is first make these machines useful will gain big economic and national security advantages.

Copper structures conduct heat well and connect the apparatus to its cooling system.

Amy Lombard

Back in the world of right now, though, quantum processors are too simple to do practical work. Google is working to stage a demonstration known as quantum supremacy, in which a quantum processor would solve a carefully designed math problem beyond existing supercomputers. But that would be an historic scientific milestone, not proof quantum computing is ready to do real work.

As quantum computer prototypes get larger, the first practical use for them will probably be for chemistry simulations. Computer models of molecules and atoms are vital to the hunt for new drugs or materials. Yet conventional computers cant accurately simulate the behavior of atoms and electrons during chemical reactions. Why? Because that behavior is driven by quantum mechanics, the full complexity of which is too great for conventional machines. Daimler and Volkswagen have both started investigating quantum computing as a way to improve battery chemistry for electric vehicles. Microsoft says other uses could include designing new catalysts to make industrial processes less energy intensive, or even to pull carbon dioxide out of the atmosphere to mitigate climate change.

Quantum computers would also be a natural fit for code-breaking. Weve known since the 90s that they could zip through the math underpinning the encryption that secures online banking, flirting, and shopping. Quantum processors would need to be much more advanced to do this, but governments and companies are taking the threat seriously. The National Institute of Standards and Technology is in the process of evaluating new encryption systems that could be rolled out to quantum-proof the internet.

When cooled to operating temperature, the whole assembly is hidden inside this white insulated casing.

Amy Lombard

Tech companies such as Google are also betting that quantum computers can make artificial intelligence more powerful. Thats further in the future and less well mapped out than chemistry or code-breaking applications, but researchers argue they can figure out the details down the line as they play around with larger and larger quantum processors. One hope is that quantum computers could help machine-learning algorithms pick up complex tasks using many fewer than the millions of examples typically used to train AI systems today.

Despite all the superposition-like uncertainty about when the quantum computing era will really begin, big tech companies argue that programmers need to get ready now. Google, IBM, and Microsoft have all released open source tools to help coders familiarize themselves with writing programs for quantum hardware. IBM has even begun to offer online access to some of its quantum processors, so anyone can experiment with them. Long term, the big computing companies see themselves making money by charging corporations to access data centers packed with supercooled quantum processors.

Whats in it for the rest of us? Despite some definite drawbacks, the age of conventional computers has helped make life safer, richer, and more convenientmany of us are never more than five seconds away from a kitten video. The era of quantum computers should have similarly broad reaching, beneficial, and impossible to predict consequences. Bring on the qubits.

The Quantum Computing Factory Thats Taking on Google and IBMPeek inside the ultra-clean workshop of Rigetti Computing, a startup packed with PhDs wearing what look like space suits and gleaming steampunk-style machines studded with bolts. In a facility across the San Francisco Bay from Silicon Valley, Rigetti is building its own quantum processors, using similar technology to that used by IBM and Google.

Why JP Morgan, Daimler Are Testing Quantum Computers That Arent Useful YetWall Street has plenty of quantsmath wizards who hunt profits using equations. Now JP Morgan has quantum quants, a small team collaborating with IBM to figure out how to use the power of quantum algorithms to more accurately model financial risk. Useful quantum computers are still years away, but the bank and other big corporations say that the potential payoffs are so large that they need to seriously investigate quantum computing today.

The Era of Quantum Computing is Here. Outlook: CloudyCompanies working on quantum computer hardware like to say that the field has transitioned from the exploration and uncertainty of science into the more predictable realm of engineering. Yet while hardware has improved markedly in recent years, and investment is surging, there are still open scientific questions about the physics underlying quantum computing.

Quantum Computing Will Create Jobs. But Which Ones?You cant create a new industry without people to staff the jobs it creates. A Congressional bill called the National Quantum Initiative seeks to have the US government invest in training the next generation of quantum computer technicians, designers, and entrepreneurs.

Job One For Quantum Computers: Boost Artificial IntelligenceArtificial intelligence and quantum computing are two of Silicon Valleys favorite buzzwords. If they can be successfully combined, machines will get a lot smarter.

Loopholes and the Anti-Realism Of the Quantum WorldEven people who can follow the math of quantum mechanics find its implications for reality perplexing. This book excerpt explains why quantum physics undermines our understanding of reality with nary an equation in sight.

Quantum Computing is the Next Security Big Security RiskIn 1994, mathematician Peter Shor wrote an algorithm that would allow a quantum computer to pierce the encryption that today underpins online shopping and other digital. As quantum computers get closer to reality, congressman Will Hurd (R-Texas) argues the US needs to lead a global effort to deploy new forms of quantum-resistant encryption.

This guide was last updated on August 21, 2018.

Enjoyed this deep dive? Check out more WIRED Guides.

See original here:
What Is Quantum Computing? The Complete WIRED Guide | WIRED

Quantum Computing Market Research Report- Forecast 2022 | MRFR

Market Synopsis of Quantum Computing Market:

Market Scenario:

Quantum computing is the area of study focused on developing computer technology based on the principles of quantum theory, which explains the nature and behavior of energy and matter on the quantum (atomic and subatomic) level. A Quantum computer follows the laws of quantum physics via which it can gain enormous power, have the ability to be in multiple states and perform tasks using all possible permutations simultaneously.

A classical computer works on the principle of Boolean algebra operating with a 7-mode logic gate principle, whereas a quantum computer can work with a 2-mode logic gate. In a quantum computer, a number of elemental particles such as electrons or photons can be used, with either their charge or polarization acting as a representation of 0 and/or 1. Each of these particles is known as a quantum bit, or qubit, the nature and behavior of these particles form the basis of quantum computing.

The study indicates that the major driving factor for the Quantum Computing market is the increasing implementation of machine learning by quantum computers in order to recognize objects by detecting recurring patterns. It has been observed that over the recent past several research institutes along with scientists are carrying out research programs to truly understand the practical capacity of quantum computers.

The global Quantum Computing market is expected to grow at USD ~2,464 million by 2022, at ~24% of CAGR between 2016 and 2022.

Quantum Computing Market

Study Objectives of Quantum Computing Market:

The prominent players in the Quantum Computing market are – D-Wave Systems Inc. (Canada), International Business Machines Corporation (U.S.), Lockheed Martin Corporation (U.S.), Intel Corporation (U.S.), Anyon Systems Inc. (Canada), Cambridge Quantum Computing Limited (U.K.), QC Ware, Corp. (U.S.), Rigetti Computing (U.S.), QxBranch (U.S.) among others.

Segments:

Quantum Computing market is segmented on the basis of application and vertical.

Quantum Computing market by application:

Quantum Computing market by Vertical:

The regional analysis of Quantum Computing market is being studied for region such as Asia Pacific, North America, Europe and Rest of the World. It has been observed that North America would dominate the Quantum Computing market owing to factors such as usage of quantum computers by government agencies and aerospace & defense for machine learning. The study indicates that Europe has the second biggest market share in the Quantum Computing market.

Asia Pacific Quantum Computing market is expected to show a positive growth over the forecast period owing to factors such as wide adoption of quantum computers by BFSI sector. In Asia-Pacific countries like China, Japan and others are making use of quantum computers for optimization of tasks due to which the study reveals that these countries would show a sudden hike in Quantum Computing market by the forecast period.

Intended Audience

1 MARKET INTRODUCTION

1.1 INTRODUCTION

1.2 SCOPE OF STUDY

1.2.1 RESEARCH OBJECTIVE

1.2.2 ASSUMPTIONS

1.2.3 LIMITATIONS

1.3 MARKET STRUCTURE

2 RESEARCH METHODOLOGY

2.1 RESEARCH NETWORK SOLUTION

2.2 PRIMARY RESEARCH

2.3 SECONDARY RESEARCH

2.4 FORECAST MODEL

2.4.1 MARKET DATA COLLECTION, ANALYSIS & FORECAST

2.4.2 MARKET SIZE ESTIMATION

3 MARKET DYNAMICS

3.1 INTRODUCTION

3.2 MARKET DRIVERS

3.3 MARKET CHALLENGES

3.4 MARKET OPPORTUNITIES

3.5 MARKET RESTRAINTS

4 EXECUTIVE SUMMARY

5. MARKET FACTOR ANALYSIS

5.1 PORTERS FIVE FORCES ANALYSIS

5.2 SUPPLY CHAIN ANALYSIS

6 QUANTUM COMPUTING MARKET, BY SEGMENTS

6.1 INTRODUCTION

6.2 MARKET STATISTICS

6.2.1 BY APPLICATION

6.2.1.1 OPTIMIZATION

6.2.1.2 MACHINE LEARNING

6.2.1.3 SIMULATION

6.2.2 BY VERTICAL

6.2.2.1 BFSI

6.2.2.2 IT & TELECOMMUNICATION

6.2.2.3 HEALTHCARE

6.2.2.4 TRANSPORTATION

6.2.2.5 GOVERNMENT

6.2.2.6 AEROSPACE & DEFENSE

6.2.2.7 OTHERS

6.2.3 BY GEOGRAPHY

6.2.3.1 NORTH AMERICA

6.2.3.2 EUROPE

6.2.3.3 ASIA-PACIFIC

6.2.3.4 REST OF THE WORLD

7 COMPETITIVE ANALYSIS

7.1 MARKET SHARE ANALYSIS

7.2 COMPANY PROFILES

7.2.1 D-WAVE SYSTEMS INC. (CANADA)

7.2.2 INTERNATIONAL BUSINESS MACHINES CORPORATION (U.S.)

7.2.3 LOCKHEED MARTIN CORPORATION (U.S.)

7.2.4 INTEL CORPORATION (U.S.)

7.2.5 ANYON SYSTEMS INC. (CANADA)

7.2.6 CAMBRIDGE QUANTUM COMPUTING LIMITED (U.K.)

7.2.7 QC WARE, CORP. (U.S.)

7.2.8 RIGETTI COMPUTING (U.S.)

7.2.9 QXBRANCH (U.S.)

7.2.10 OTHERS

LIST OF TABLES

TABLE 1 GLOBAL QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 2 GLOBAL QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 3 GLOBAL QUANTUM COMPUTING MARKET, BY REGIONS

TABLE 4 NORTH AMERICA QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 5 NORTH AMERICA QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 6 U.S. QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 7 U.S. QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 8 CANADA QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 9 CANADA QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 10 EUROPE QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 11 EUROPE QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 12 GERMANY QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 13 GERMANY QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 14 FRANCE QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 15 FRANCE QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 16 U.K. QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 17 U.K. QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 18 REST OF EUROPE QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 19 REST OF EUROPE CHIP ON FLEX MARKET, BY VERTICAL

TABLE 20 ASIA-PACIFIC QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 21 ASIA-PACIFIC QUANTUM COMPUTING MARKET, BY VERTICAL

TABLE 22 MIDDLE EAST & AFRICA QUANTUM COMPUTING MARKET, BY APPLICATION

TABLE 23 MIDDLE EAST & AFRICA QUANTUM COMPUTING MARKET, BY VERTICAL

LIST OF FIGURES

FIGURE 1 RESEARCH NETWORK SOLUTION

Originally posted here:
Quantum Computing Market Research Report- Forecast 2022 | MRFR

Two Quantum Computing Bills Are Coming To Congress

Quantum computing has made it to the United States Congress. “Quantum computing is the next technological frontier that will change the world, and we cannot afford to fall behind,” said Senator Kamala Harris (D-California) in a statement passed to Gizmodo. “We must act now to address the challenges we face in the development of this technology — our future depends on it.” From the report: The bill introduced by Harris in the Senate focuses on defense, calling for the creation of a consortium of researchers selected by the Chief of Naval Research and the Director of the Army Research Laboratory. The consortium would award grants, assist with research, and facilitate partnerships between the members. Another, yet-to-be-introduced bill, seen in draft form by Gizmodo, calls for a 10-year National Quantum Initiative Program to set goals and priorities for quantum computing in the US; invest in the technology; and partner with academia and industry. An office within the Department of Energy would coordinate the program. Another group would include members from the National Science Foundation, the National Institute of Standards and Technology, the Department of Energy, the office of the Director of National Intelligence to coordinate research and education activity between agencies. Furthermore, the draft bill calls for the establishment of up to five Quantum Information Science research centers, as well as two multidisciplinary National Centers for Quantum Research and Education.

Go here to read the rest:
Two Quantum Computing Bills Are Coming To Congress

Senate bills would make quantum computing a priority

Gizmodo, meanwhile, has seen a second draft bill that would start a decade-long National Quantum Initiative Program to set priorities for developing the technology, including investments and partnerships. The Department of Energy, National Science Foundation, National Institute of Standards and Technology and the Director of National Intelligence would all foster education and research. The bill would also create up to five Quantum Information Science research centers as well as two Quantum Research and Education centers.

It won’t surprise you to hear that academics and quantum computing pioneers would like to see the bills become law. D-Wave and IBM have already lent their support to the efforts. The challenge, of course, is turning these well-meaning ideas into law. The national defense and job angles might make it a strong sell, but quantum computing is very much in its infancy. Harris and other proponents will have to show that it’s worth backing the tech when companies and scientists are only just discovering its potential uses.

Read the original post:
Senate bills would make quantum computing a priority