Category Archives: Quantum Computing

How Does Quantum Computing Work? – ExtremeTech

Quantum computing just plain sounds cool. Weve all read about the massive investment in making it a reality, and its promise of breakthroughs in many industries. But all that press is usually short on what it is and how it works. Thats for a reason: Quantum computing is quite different from traditional digital computing and requires thinking about things in a non-intuitive way. Oh, and there is math. Lots of it.

This article wont make you an expert, but it should help you understand what quantum computing is, why its important, and why its so exciting. If you already have a background in quantum mechanics and grad school math, you probably dont need to read this article. You can jump straight into a book like A Gentle Introduction To Quantum Computing (Hint, gentle is a relative term). But ifyoure like most of us and dont have that background, lets do our best to demystify one of the most mystical topics in computing.

In a few short paragraphs, here are the basics that well go over in more detail in this article: Quantum computers use qubits instead of traditional bits (binary digits). Qubits are different from traditional bits because until they are read out (meaning measured), they can exist in an indeterminate state where we cant tell whether theyll be measured as a 0 or a 1. Thats because of a unique property called superposition.

Superposition makes qubits interesting, but their real superpower is entanglement. Entangled qubits can interact instantly. To make functional qubits, quantum computers have to be cooled to near absolute zero. Even when supercooled, qubits dont maintain their entangled state (coherence) for very long.

That makes programming them extra tricky. Quantum computers are programmed using sequences of logic gates of various kinds, but programs need to run quickly enough that the qubits dont lose coherence before theyre measured. For anyone who took a logic class or digital circuit design using flip-flops, quantum logic gates will seem somewhat familiar, although quantum computers themselves are essentially analog. However, the combination of superposition and entanglement make the process about a hundred times more confusing.

The ordinary bits we use in typical digital computers are either 0 or 1. You can read them whenever you want, and unless there is a flaw in the hardware, they wont change. Qubits arent like that. They have a probability of being 0 and a probability of being 1, but until you measure them, they may be in an indefinite state. That state,along with some other state information that allows for additional computational complexity, can be described as being at an arbitrary point on a sphere (of radius 1), that reflects both the probability of being measured as a 0 or 1 (which are the north and south poles).

The qubits state is a combination of the values along all three axes. This is called superposition. Some texts describe this property as being in all possible states at the same time, while others think thats somewhat misleading and that were better off sticking with the probability explanation. Either way, a quantum computer can actually do math on the qubit while it is in superposition changing the probabilities in various ways through logic gates before eventually reading out a result by measuring it. In all cases, though, once a qubit is read, it is either 1 or 0 and loses its other state information.

Qubits typically start life at 0, although they are often then moved into an indeterminate state using a Hadamard Gate, which results in a qubit that will read out as 0 half the time and 1 the other half. Other gates are available to flip the state of a qubit by varying amounts and directions both relative to the 0 and 1 axes, and also a third axis thatrepresents phase, and provides additional possibilities for representing information. The specific operations and gates available depend on the quantum computer and toolkit youre using.

Groups of independent qubits, by themselves, arent enough to create the massive breakthroughs that are promised by quantum computing. The magic really starts to happen when the quantum physics concept of entanglement is implemented. One industry expert likened qubits without entanglement as being a very expensive classical computer. Entangled qubits affect each other instantly when measured, no matter far apart they are, based on what Einstein euphemistically called spooky action at a distance. In terms of classic computing, this is a bit like having a logic gate connecting every bit in memory to every other bit.

You can start to see how powerful that might be compared with a traditional computer needing to read and write from each element of memory separately before operating on it. As a result, there are multiple large potential gains from entanglement. The first is a huge increase in the complexity of programming that can be executed, at least for certain types of problems. One thats creating a lot of excitement is the modeling of complex molecules and materials that are very difficult to simulate with classical computers. Another might be innovations in long-distance secure communications if and when it becomes possible to preserve quantum state over large distances. Programming using entanglement typically starts with the C-NOT gate, which flips the state of an entangled particle if its partner is read out as a 1. This is sort of like a traditional XOR gate, except that it only operates when a measurement is made.

Superposition and entanglement are impressive physical phenomena, but leveraging them to do computation requires a very different mindset and programming model. You cant simply throw your C code on a quantum computer and expect it to run, and certainly not to run faster. Fortunately, mathematicians and physicists are way ahead of the computer builders here, having developed clever algorithms that take advantage of quantum computers decades before the machines started to appear.

Some of the first quantum algorithms created, and honestly, some of the few useful ones Ive found that you can understand without a graduate degree in math, are for secure cryptographic key distribution. These algorithms use the property of entanglement to allow the key creator to send one of each of many pairs of qubits to the recipient. The full explanation is pretty long, but the algorithms rely on the fact that if anyone intercepts and reads one of the entangled bits en route, the companion qubit at the sender will be affected. By passing some statistics back and forth, the sender and receiver can figure out whether the key was transmitted securely, or was hacked on the way.

You may have read that quantum computers one day could break most current cryptography systems. They will be able to do that because there are some very clever algorithms designed to run on quantum computers that can solve a hard math problem, which in turn can be used to factor very large numbers. One of the most famous is Shors Factoring Algorithm. The difficulty of factoring large numbers is essential to the security of all public-private key systems which are the most commonly used today. Current quantum computers dont have nearly enough qubits to attempt the task, but various experts predict they will within the next 3-8 years. That leads to some potentially dangerous situations, such as if only governments and the super-rich had access to the ultra-secure encryption provided by quantum computers.

There are plenty of reasons quantum computers are taking a long time to develop. For starters, you need to find a way to isolate and control a physical object that implements a qubit. That also requires cooling it down to essentially zero (as in .015 degrees Kelvin, in the case of IBMs Quantum One). Even at such a low temperature, qubits are only stable (retaining coherence) for a very short time. That greatly limits the flexibility of programmers in how many operations they can perform before needing to read out a result.

Not only do programs need to be constrained, but they need to be run many times, as current qubit implementations have a high error rate. Additionally, entanglement isnt easy to implement in hardware either. In many designs, only some of the qubits are entangled, so the compiler needs to be smart enough to swap bits around as needed to help simulate a system where all the bits can potentially be entangled.

The good news is that trivial quantum computing programs are actually pretty easy to understand if a bit confusing at first. Plenty of tutorials are available that will help you write your first quantum program, as well as let you run it on a simulator, and possibly even on a real quantum computer.

One of the best places to start is with IBMs QISKit, a free quantum toolkit from IBM Q Research that includes a visual composer, a simulator, and access to an actual IBM quantum computer after you have your code running on the simulator. Rigetti Quantum Computing has also posted an easy intro application, which relies on their toolkit and can be run on their machines in the cloud.

Unfortunately, the trivial applications are just that: trivial. So simply following along with the code in each example doesnt really help you master the intricacies of more sophisticated quantum algorithms. Thats a much harder task.

Thanks to William Poole and Sue Gemmell for their thoughtful input.

Now Read:

Also, check out ourExtremeTech Explainsseries for more in-depth coverage of todays hottest tech topics.

Top image credit: IBM

View post:
How Does Quantum Computing Work? – ExtremeTech

Quantum technology – Wikipedia

Quantum technology is a new field of physics and engineering, which transitions some of the properties of quantum mechanics, especially quantum entanglement, quantum superposition and quantum tunnelling, into practical applications such as quantum computing, quantum sensors, quantum cryptography, quantum simulation, quantum metrology and quantum imaging.

Quantum superposition states can be very sensitive to a number of external effects, such as electric, magnetic and gravitational fields; rotation, acceleration and time, and therefore can be used to make very accurate sensors. There are many experimental demonstrations of quantum sensing devices, such as the experiments carried out by the nobel laureate William D. Phillips on using cold atom interferometer systems to measure gravity and the atomic clock which is used by many national standards agencies around the world to define the second.

Recent efforts are being made to engineer quantum sensing devices, so that they are cheaper, easier to use, more portable, lighter and consume less power. It is believed that if these efforts are successful, it will lead to multiple commercial markets, such as for the monitoring of oil and gas deposits, or in construction.

Quantum secure communication are methods which are expected to be ‘quantum safe’ in the advent of a quantum computing systems that could break current cryptography systems. One significant component of a quantum secure communication systems is expected to be Quantum key distribution, or ‘QKD’: a method of transmitting information using entangled light in a way that makes any interception of the transmission obvious to the user.

Quantum computers are the ultimate quantum network, combining ‘quantum bits’ or ‘qubit’ which are devices that can store and process quantum data (as opposed to binary data) with links that can transfer quantum information between qubits. In doing this, quantum computers are predicted to calculate certain algorithms significantly faster than even the largest classical computer available today.

Quantum computers are expected to have a number of significant uses in computing fields such as optimization and machine learning. They are famous for their expected ability to carry out ‘Shor’s Algorithm’, which can be used to factorise large numbers which are mathematically important to secure data transmission.

There are many devices available today which are fundamentally reliant on the effects of quantum mechanics. These include: laser systems, transistors and semi-conductor devices and other devices, such as MRI imagers. These devices are often referred to belonging to the ‘first quantum revolution’; the UK Defence Science and Technology Laboratory (Dstl) grouped these devices as ‘quantum 1.0’,[1] that is devices which rely on the effects of quantum mechanics. Quantum technologies are often described as the ‘second quantum revolution’ or ‘quantum 2.0’. These are generally regarded as a class of device that actively create, manipulate and read out quantum states of matter, often using the quantum effects of superposition and entanglement.

The field of quantum technology was first outlined in a 1997 book by Gerard J. Milburn,[2] which was then followed by a 2003 article by Jonathan P. Dowling and Gerard J. Milburn,[3][4] as well as a 2003 article by David Deutsch.[5] The field of quantum technology has benefited immensely from the influx of new ideas from the field of quantum information processing, particularly quantum computing. Disparate areas of quantum physics, such as quantum optics, atom optics, quantum electronics, and quantum nanomechanical devices, have been unified under the search for a quantum computer and given a common language, that of quantum information theory.

The Quantum Manifesto was signed by 3,400 scientists and officially released at the 2016 Quantum Europe Conference, calling for a quantum technology initiative to coordinate between academia and industry, to move quantum technologies from the laboratory to industry, and to educate quantum technology professionals in a combination of science, engineering, and business.[6][7][8][9][10]

The European Commission responded to that manifesto with the Quantum Technology Flagship, a 1 Billion, 10-year-long megaproject, similar in size to earlier European Future and Emerging Technologies Flagship projects such as the Graphene Flagship and Human Brain Project.[8][11] China is building the world’s largest quantum research facility with a planned investment of 76 Billion Yuan (approx. 10 Billion).[12] The USA are preparing a national initiative.[13]

From 2010 onwards, multiple governments have established programmes to explore quantum technologies, such as the UK National Quantum Technologies Programme, which created four quantum ‘hubs’, the Centre for Quantum Technologies in Singapore, and QuTech a Dutch centre to develop a topological quantum computer.[14]

In the private sector, there have been multiple investments into quantum technologies made by large companies. Examples include Google’s partnership with the John Martinis group at UCSB,[15] multiple partnerships with the Canadian quantum computing company D-wave systems, and investment by many UK companies within the UK quantum technologies programme.

Here is the original post:
Quantum technology – Wikipedia

CES 2019: IBM’s Q System One Is the Rock Star Quantum …

IBM announced the worlds first commercially available quantum computer at CES 2019. Well. Kinda.

Called IBM Q System One, the computer is a glass box the size of a van with a sleek black cylinder hanging from the ceiling. Yet you wont find it in your garage, or in the offices of your nearest Fortune 500 company. Those willing to pay to harness the power of the 20-qubit machine will access IBM Q System One over the cloud. The hardware will be housed at IBMs Q Computation Center, set to open this year in Poughkeepsie, New York.

Reception has proven mixed. While the initial wave of news was positive, some have received the announcement with skepticism. Their points are valid. While IBMs press release touts that Q System One enables universal approximate superconducting quantum computersto operate beyond the confines of the research lab, it will remain under IBMs watchful eye. And IBM already offered cloud access to quantum computers at the Thomas J. Watson Research Center in Yorktown, New York.

In effect, IBM Q System One is an expansion of an existing cloud service, not a new product. Yet that doesnt lessen its impact.

Quantum computing faces many massive scientific challenges. Q System One, with 20 qubits, isnt no where near capable of beating classical computers even in tasks that will theoretically benefit from quantum computing. No universal quantum computer exists today, and no one knows when one will arrive.

Yet, building a useful quantum computer will only be half the battle. The other half is learning how to use it. Quantum computing, once it arrives, will fundamentally change what computers can accomplish. Engineers will tackle the challenge of building a quantum computer that can operate in a normal environment, while programmers must learn to write software for hardware that compute in ways alien to binary computers.

Companies cant rely on a build it, and they will come philosophy. That might suffice so long as quantum computing remains in the realm of research, but it wont work as the quantum realm bumps up against the general public. Quantum will need a breakthrough device that wows everyone at a glance. IBM Q System One is such a device.

Impact is what IBM Q System One was meant to deliver from the start. Robert Sutor, IBMs Vice President of Q Strategy and Ecosystem, said as much, telling Digital Trends that [we] have to step back and say, What have we created so far? Its amazing what weve created so far, but is it a system? Is it a well-integrated system? Are all the individual parts optimized and working together as best as possible?

The answer, up until recently, was no. IBMs quantum computers were not meant to be used outside of a lab and were built with no regard for aesthetic or ease of use. Q System One changes that, and in doing so, it could entirely change how the system and quantum computers, in general are perceived.

This isnt a new strategy for IBM. As Sutor will quickly point out, the company took a similar approach when it built computer mainframes in the 1960s and 70s. With all the focus now, people going back to mid-century modern, IBM has a long history of design. [], he told Digital Trends. We are fully coming back to that. Other examples of this tactic include Deep Blues famous chess match and the ThinkPad, which redefined how consumers thought of portable computers.

Q System One might not be a major leap forward for the science of quantum computing, but it will give the field the standard bearer it needs. Its already making quantum feel less intimidating for those of us who lack a Ph.D in quantum physics.

See the original post here:
CES 2019: IBM’s Q System One Is the Rock Star Quantum …

Quantum Computing | The MIT Press

Summary

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

The combination of two of the twentieth century’s most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit.

This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book.

Hardcover Out of Print ISBN: 9780262015066 392 pp. | 7 in x 9 in 3 graphs, 79 figures, 2 tables March 2011

Paperback $39.00 S | 30.00 ISBN: 9780262526678 392 pp. | 7 in x 9 in 3 graphs, 79 figures, 2 tables August 2014

Authors Eleanor G. Rieffel Eleanor Rieffel is Research Scientist at NASA Ames Research Center. Wolfgang H. Polak Wolfgang Polak is a computer science consultant.

Go here to see the original:
Quantum Computing | The MIT Press

IBM thinks outside of the lab, puts quantum computer in a box

IBM unveiled the worlds first universal approximate quantum computing systeminstalled outside of a research lab at CES earlier this week and with it, the next era of computing.

The 20-qubit IBM Q System One represents the first major leap for quantum computers of 2019, but before we get into the technical stufflets take a look at this thing.

All we can say is: wowzah! When can we get a review unit?

The commitment to a fully-functional yet aesthetically pleasing design is intriguing. Especially considering that, just last year, pundits claimedquantum computing was adead-end technology.

To make the first integrated quantum computer designed for commercial use outside of a lab both beautiful and functional, IBM enlisted the aid of Goppion, the company responsible for some of the worlds most famous museum-quality display cases, Universal Design Studio and Map Project Office. The result is not only (arguably) a scientific first, but a stunning machine to look at.

Credit: IBM

This isnt just about looks. That box represents a giant leap in the field.

Its hard to overstate the importance of bringing quantum computers outside of laboratories. Some of the biggest obstacles to universal quantum computing have been engineering-related. It isnt easy to manipulate the fabric of the universe or, at a minimum, observe it and the machines that attempt it typically require massive infrastructure.

In order to decouple a quantum system from its laboratory lifeline, IBM had to figure out how to conduct super-cooling (necessary for quantum computation under the current paradigm) in a box. This was accomplished through painstakingly developed cryogenic engineering.

Those familiar with the companys history might recall that, back in the 1940s, IBMs classical computers took up an entire room. Eventually, those systems started shrinking. Now they fit on your wrist and have more computational power than all the computers from the mainframe era put together.

It sure looks like history is repeating itself:

TNW asked Bob Wisnieff, IBMs Quantum Computing CTO, if todays progress reminded him of that transition. He told us:

In some respects, quantum computing systems are at a similar stage as the mainframes of the 1960s. The big difference is the cloud access, in a couple of ways:

Imagine if everyone in the 60s had five to ten years to explore the mainframes hardware and programming when it was essentially still a prototype. Thats where we are with quantum computing.

And now, in the IBM Q System One, we have a quantum system that is stable, reliable, and continuously available for commercial use in an IBM Cloud datacenter.

The IBM Q System One isnt the most powerful quantum computer out there. Its not even IBMs most powerful. But its the first one that could, technically, be installed on-site for a commercial customer. It wont be, however. At least not for the time being.

Instead, it can be accessed via the cloud as part of the companys quantum computing Q initiative.

For more information about IBMs Q System One visit the official website here. And dont forget to check out TNWs beginners guide to quantum computers.

Read next: Trump Jr.’s deleted Instagram post likened border wall to zoo fencing

See the article here:
IBM thinks outside of the lab, puts quantum computer in a box

IBM unveils its first commercial quantum computer

At CES, IBM today announced its first commercial quantum computer for use outside of the lab. The 20-qubit system combines into a single package the quantum and classical computing parts it takes to use a machine like this for research and business applications. That package, the IBM Q system, is still huge, of course, but it includes everything a company would need to get started with its quantum computing experiments, including all the machinery necessary to cool the quantum computing hardware.

While IBM describes it as the first fully integrated universal quantum computing system designed for scientific and commercial use, its worth stressing that a 20-qubit machine is nowhere near powerful enough for most of the commercial applications that people envision for a quantum computer with more qubits and qubits that are useful for more than 100 microseconds. Its no surprise then, that IBM stresses that this is a first attempt and that the systems are designed to one day tackle problems that are currently seen as too complex and exponential in nature for classical systems to handle. Right now, were not quite there yet, but the company also notes that these systems are upgradable (and easy to maintain).

The IBM Q System One is a major step forward in the commercialization of quantum computing, said Arvind Krishna, senior vice president of Hybrid Cloud and director of IBM Research. This new system is critical in expanding quantum computing beyond the walls of the research lab as we work to develop practical quantum applications for business and science.

More than anything, though, IBM seems to be proud of the design of the Q systems. In a move that harkens back to Crays supercomputers with its expensive couches, IBM worked withdesign studios Map Project Office and Universal Design Studio, as well Goppion, the company that has built, among other things, the display cases that house the U.K.s crown jewels and the Mona Lisa. IBM clearly thinks of the Q system as a piece of art and, indeed, the final result is quite stunning. Its a nine-foot-tall and nine-foot-wide airtight box, with the quantum computing chandelier hanging in the middle, with all of the parts neatly hidden away.

If you want to buy yourself a quantum computer, youll have to work with IBM, though. It wont be available with free two-day shipping on Amazon anytime soon.

In related news, IBM also announced the IBM Q Network, a partnership with ExxonMobil and research labs like CERN and Fermilab that aims to build a community that brings together the business and research interests to explore use cases for quantum computing. The organizations that partner with IBM will get access to its quantum software and cloud-based quantum computing systems.

Go here to see the original:
IBM unveils its first commercial quantum computer

A new type of quantum computer has smashed every record …

Why it matters: As the quantum future looms closer, hundreds if not thousands of companies and research groups race towards constructing the first quantum computer that can outperform traditional supercomputers. However, the competition is not just between organizations, its also between competing methods of quantum computing.

IonQ was founded on a gamble that ‘trapped ion quantum’ computing could outperform the silicon-based quantum computers that Google and others are building. As of right now, it does. IonQ has constructed a quantum computer that can perform calculations on a 79-qubit array, beating the previous king Googles efforts by 7 qubits.

Their error rates are also the best in the business, with their single-qubit error rate at 99.97% while the nearest competitors are around the 99.5 mark, and a two-qubit error rate of 99.3% when most competitors are beneath 95%. But how does it compare to regular computers?

According to IonQ, in the kinds of workloads that quantum computers are being built for, its already overtaking them. The Bernstein-Vazirani Algorithm, a benchmark IonQ is hoping will take off, tests a computers ability to determine a single encoded number (called an oracle) when the computer can only ask a single yes/no question.

When the algorithm is run for every number between 1 and 1023, a conventional computer gets a 0.2% success rate. IonQs quantum computer gets a 79% success rate.

After two years of work, our against-the-grain bet is paying off, IonQs CEO, Christopher Monroe, believes trapped ion quantum computing is the best bet. The IonQ System is robust and industrial strength. Even at this early stage, the results show the ion trap design has all the advantages we expected and more.

All quantum computers isolate and manipulate quantum systems to create quantum versions of computer bits, called qubits reads IonQs website. Quantum computers replace the traditional 0 or 1 logic gates processors rely on and replace them with 0 and 1 quantum gates, which are simultaneously 0 and 1 during calculations but output 0 or 1. This funky math has the potential to reinvent computing in fields like chemistry, medicine, energy, logistics and future fields like AI.

The specific ‘trapped ion technology’ the IonQs quantum computer relies on replaces the supercooled silicon that Google, IBM and Rigetti use with ytterbium, a silvery rare earth metal. The ionized ytterbium is suspended in an oscillating electromagnetic field, where its manipulated by engineers who program the lasers that input, store and retrieve information.

While ‘trapped ion’ quantum computing still has some hurdles to overcome, namely slow operation times and massive sizes, the accuracy and scalability of the technology means that IonQ will be letting companies use its computer sometime next year. Its also got a peer-reviewed journal article on the developments that will be published in the coming months.

Quantum supremacy, the moment that the best quantum computer is better than the best traditional computer, is approaching rapidly. While even IonQ will admit that they dont know what the killer app of quantum computers is yet, it doesnt seem like itll be too long before we’re all taking it for granted.

Original post:
A new type of quantum computer has smashed every record …

China bet big on quantum computing. Now the US races to …

The US House of Representatives unanimously passed a bill Thursday to help it match China in quantum computing capabilities. Quantum computers promise to be orders of magnitude faster than the traditional computers we use today.

The bill was passed shortly after the Center for New American Security, a Washington, DC-based think tank of former Pentagon officials, warned in a new report China’s focus on quantum technologies could help it to surpass the United States military.

Traditional computers store data as a binary digit, like a light switch that’s on or off. Quantum computing relies on qubits, which can be in many positions at once.

This creates new possibilities for more powerful computers, and quantum advocates speak excitedly of new options such as more secure communications and improved cancer treatments.

“Quantum may be the compute technology of the next 100 years,” Jim Clarke, the director of quantum hardware at Intel told CNNMoney earlier this year. “This is something like a space race, it comes around once in a generation.”

Intel, Google and IBM are among several American companies that are developing quantum technologies. But China stands out globally for its energy and investments.

“They have a quantum satellite no one else has done, a communications network no one else has done, and workforce development program to bring new Chinese quantum engineers online,” said Paul Stimers, founder of Quantum Industry Coalition, which lobbies on behalf of the American makers of quantum technologies. “You start to say, that’s worrisome.”

US stealth technology, a long-running military edge, could become obsolete due to quantum technologies, the Center for New American Security researchers caution. It could also become hard to keep an eye on China, and more difficult to guard sensitive US information.

For the first time in recent history, the United States faces the danger of being surprised by technologies another country possesses, Elsa Kania, one of the report’s authors, told CNNMoney. But predicting how powerful quantum technologies will become, and how fast they will do so is difficult, she added.

Congress isn’t alone in embracing quantum computing. In June, the White House announced a new subcommittee in the National Science and Technology Council to coordinate quantum information science research and development.

There’s significant hype in the quantum computing industry, and reasons to be overly concerned with possible dangers. A world-changing quantum computer is likely 10 years away, according to Clarke. Today, there are no guarantees quantum technologies will succeed. Qubits fail a lot, and they need to be kept at extremely cold temperatures a fraction of a degree above absolute zero.

China has launched a quantum satellite, but its abilities are extremely limited when compared with the superpowers quantum advocates expect the technology will one day perform.

“The satellite is absolutely useless in terms of doing anything right now, but it demonstrates a capability right now that’s fairly impressive,” Stimers said.

Read the original here:
China bet big on quantum computing. Now the US races to …

China bet big on quantum computing. Now the … – money.cnn.com

The US House of Representatives unanimously passed a bill Thursday to help it match China in quantum computing capabilities. Quantum computers promise to be orders of magnitude faster than the traditional computers we use today.

The bill was passed shortly after the Center for New American Security, a Washington, DC-based think tank of former Pentagon officials, warned in a new report China’s focus on quantum technologies could help it to surpass the United States military.

Traditional computers store data as a binary digit, like a light switch that’s on or off. Quantum computing relies on qubits, which can be in many positions at once.

This creates new possibilities for more powerful computers, and quantum advocates speak excitedly of new options such as more secure communications and improved cancer treatments.

“Quantum may be the compute technology of the next 100 years,” Jim Clarke, the director of quantum hardware at Intel told CNNMoney earlier this year. “This is something like a space race, it comes around once in a generation.”

Related: China leads the world in drones. US companies want to change that.

Intel, Google and IBM are among several American companies that are developing quantum technologies. But China stands out globally for its energy and investments.

“They have a quantum satellite no one else has done, a communications network no one else has done, and workforce development program to bring new Chinese quantum engineers online,” said Paul Stimers, founder of Quantum Industry Coalition, which lobbies on behalf of the American makers of quantum technologies. “You start to say, that’s worrisome.”

US stealth technology, a long-running military edge, could become obsolete due to quantum technologies, the Center for New American Security researchers caution. It could also become hard to keep an eye on China, and more difficult to guard sensitive US information.

For the first time in recent history, the United States faces the danger of being surprised by technologies another country possesses, Elsa Kania, one of the report’s authors, told CNNMoney. But predicting how powerful quantum technologies will become, and how fast they will do so is difficult, she added.

Congress isn’t alone in embracing quantum computing. In June, the White House announced a new subcommittee in the National Science and Technology Council to coordinate quantum information science research and development.

There’s significant hype in the quantum computing industry, and reasons to be overly concerned with possible dangers. A world-changing quantum computer is likely 10 years away, according to Clarke. Today, there are no guarantees quantum technologies will succeed. Qubits fail a lot, and they need to be kept at extremely cold temperatures a fraction of a degree above absolute zero.

China has launched a quantum satellite, but its abilities are extremely limited when compared with the superpowers quantum advocates expect the technology will one day perform.

“The satellite is absolutely useless in terms of doing anything right now, but it demonstrates a capability right now that’s fairly impressive,” Stimers said.

CNNMoney (Washington) First published September 14, 2018: 4:30 PM ET

Go here to see the original:
China bet big on quantum computing. Now the … – money.cnn.com

US takes first step toward a quantum computing workforce …

Quantum computers promise to transform computer security, finance, and many other fields by solving certain problems far faster than conventional machines. To unlock that potential, the US government has just passed a bill to foster a viable quantum computing industry.

Christopher Monroe ofthe University of Maryland told the audience at EmTech, a conference organized by MIT Technology Review, that the US needs a new generation of engineers, schooled in the quirks of quantum physics as well as the principles of computer engineering, to help create quantum computers that can tackle real-world problems.

That is why Monroe helped draft the National Quantum Initiative Act, a bill just passed today that would establish a federal program for accelerating research and training in quantum computing. The act will release $1.275 billion to help fund several centers of excellence that should help train many quantum engineers.

Monroe is also the cofounder of IonQ, one of several startups now racing to develop usable quantum computers. It is hard for these companies to find engineers to help them develop and commercialize scalable systems. We need quantum systems engineers, Monroe said. We need that workforce.

Quantum computers operate in a totally different wayfrom conventional machines.In an ordinary computer, bits of information are represented using either a 1 or a 0. But in the quantum realm, matter behaves in bizarre ways. Quantum bits, or qubits, created and manipulated using superposition and entanglement, can perform certain types of calculation very rapidly on vast amounts of data.

In theory, a quantum machine with just a few hundred qubits should be able to run calculations that would be inconceivable using traditional hardware.

In practice, though, it is devilishly tricky to scale these systems up, because they are terribly sensitive to interference. Quantum computers were first proposed decades ago, but research on the technology has progressed at a glacial pace.

Startups and big tech companies are currently racing to develop more powerful quantum computers. IonQ is building its computers using ions trapped with electric fields. Several others, including Google, IBM, and Rigetti, are developing quantum computers using superconducting circuits. Rigetti recently demonstrated a new quantum cloud service (see Running quantum algorithms in the cloud just got a lot faster).

Monroe said the new national plan should also help the US compete internationally. China is pouring billions of dollars into its own quantum computing projects. The international picture is especially significant because these technologies promise to be useful for breakingbut also securingcommunications channels.

Within five years, quantum computers would be capable of calculations that could never be run using conventional hardware, Monroe predicts. But it remains unclear precisely how useful theseearlysystems will be, since they will only be capable of certain types of computation.

Figuring out how to use these machines will then be up to the quantum software engineers. When we build them, they will be useful for something, Monroe said.

Continue reading here:
US takes first step toward a quantum computing workforce …